
Section Notes 9

Midterm 2 Review

Applied Math / Engineering Sciences 121

Week of November 28, 2016

The following list of topics is an overview of the material that was covered in the lectures and
sections (with some specific examples).

Contents

1 Lecture 11: Integer Programming 2

2 Lecture 13: Branch and Bound I 3

3 Lecture 14 (and 12): Branch and Bound II and Formulation Strength 3

4 Lecture 15: Cutting plane methods 4

5 Lecture 16: More cuts, Branch and Cut 5

6 Lecture 17: Markov Chains 5

7 Lecture 18: Markov Decision Processes 6

1

1 Lecture 11: Integer Programming

• Integer program: A linear program (objective and constraints linear) that has the additional
requirement that all variables can only take integer values.

– binary programs (all variables 0 or 1)

– mixed integer programs (can include integer variables, binary variables, and continuous
variables)

• Many potential applications

– Weighted knapsack

– Set covering

– Traveling salesperson problem

• More powerful modeling tool than LPs.

• Modeling tricks (see Section 6 and 7 notes for more examples)

– At least one (choose appropriate Mi)

f1(x) ≤ b1
f2(x) ≤ b2

f1(x)−M1α1 ≤ b1
f2(x)−M2α2 ≤ b2

α1 + α2 ≤ 1

α1, α2 ∈ {0, 1}

– Either-or (but not both)

f1(x) ≤ b1
f2(x) ≥ b2

f1(x)−M1α1 ≤ b1
f2(x) +M2α2 ≥ b2

α1 + α2 = 1

α1, α2 ∈ {0, 1}

– If (A)-then (B)
Note that it is equivalent to model at least one of: not(A), B. Thus:

f1(x) > b1 ⇒ f2(x) ≤ b2

2

f1(x) ≤ b1 (not A)

f2(x) ≤ b2 (B)

f1(x)−M1α1 ≤ b1
f2(x)−M2α2 ≤ b2

α1 + α2 ≤ 1

α1, α2 ∈ {0, 1}

• Big-M parameters

– Select M to be as small as possible while still allowing constraints to be satisfied

2 Lecture 13: Branch and Bound I

• LP relaxations

• Weak duality of IPs

• Branch and bound algorithm (for a maximization problem):

1. Initialization Put initial problem S into list of open problems, set lower bound z = −∞
(value of best incumbent found so far).

2. Termination If no more problems in list, terminate.

3. Choosing a node Chose one of the open problems Si.

4. Optimizing Solve LP relaxation of Si, obtain dual bound zi = LPvalue.

5. Fathoming

– If LP relaxation is infeasible, then fathom this subproblem

– If zi ≤ z, fathom by bound

– If solution to LP relaxation is integer, update lower bound z := max(z, zi) and
fathom by integrality (updating incumbent solution if necessary)

6. Branching If cannot fathom the subproblem then create two new subproblems Si1 and
Si2 and add them to the list.

7. Return to step 2.

3 Lecture 14 (and 12): Branch and Bound II and Formulation
Strength

• Node selection decision

3

– Depth-first

– Best-bound first

• Dual simplex to pivot with new constraints

• Branching decision (e.g. most-fractional variable, strong branching)

• Formulation strength

– If P1 and P2 are valid formulations for an IP (meaning that they include all feasible,
integer solutions and only them), and P1 ⊂ P2, then we say P1 is a stronger formulation
than P2.

– Convex hull (every extreme point of the polyhedron is a feasible, integer solution of the
IP)

– The most important reason for preferring stronger formulations is that they allow for
more search nodes to be fathomed by bound (important for avoiding enumeration!).

4 Lecture 15: Cutting plane methods

• Valid inequality: a constraint that is satisfied by all integer, feasible solutions of an IP

• Cut: a valid inequality that separates the current fractional solution (i.e., it is not satisfied
by this fractional solution)

• Chvátal-Gomory inequalities

– Apply to “≤” inequalities and a feasible set X that is a subset of the non-negative
integers.

4

– Obtained by (i) forming a positive, linear combinations of inequalities, (ii) taking the
floor of coefficients on LHS, and (iii) taking the floor of the coefficients RHS. This last
step (iii) is valid given that the left hand side value will always be integer since X is a
subset of integers.

• Cutting plane method: generating a sequence of cuts, each cut separating the current, frac-
tional optimal solution.

• Gomory’s cutting plane algorithm

– Requires the IP to have only integer coeffs and integer RHS values, and non-negative,
integer variables.

– Repeatedly generates a cut from one of the fractional rows in the current optimal tableau.

– Gomory’s algorithm is complete for IPs with integer coefficients and RHS values.

5 Lecture 16: More cuts, Branch and Cut

• Cover inequalities

– Defined for a 0-1 knapsack set: X = {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b}, for positive
coefficients aj ≥ 0 and positive RHS value b ≥ 0.

– A set C ⊆ {1, . . . , n} is a cover if
∑

j∈C aj > b. A cover is minimal if C \ j is not a cover
for any j ∈ C.

– If C is a cover, then the cover inequality
∑

j∈C xj ≤ |C| − 1 is valid.

– An auxiliary problem can be used to find a separating cover inequality

• Extended cover inequalities: extend C by adding variables j /∈ C for which aj ≥ ai for all
i ∈ C. Also valid.

• Lifted cover inequalities: make the multiplier αjxj (αj > 0) on variable xj in an (extended)
cover inequality as large as possible, such that the inequality is still valid. Again, solve an
auxiliary problem to find αj .

• Lifted cover inequalities are complete for IPs with constraints that are 0-1 knapsack sets.

• Branch-and-cut method: if cannot fathom a node, then add cuts to automatically strengthen
the formulation. Still branch and bound, but also generate cuts (‘global’ cuts if at the root
node, ‘local’ cuts otherwise.)

• Other tricks: Preprocessing, Primal heuristics, SOS branching

6 Lecture 17: Markov Chains

• Stochastic process and Markov chain

5

– Markovian property

– Stationary transition probabilities

• States S = {0, . . . ,m − 1}, m ×m transition matrix P with pij for probability of transition
from i ∈ S to j ∈ S.

• Definitions:

– Accessible, communicate, class

– Irreducible (= one class)

– Class properties:

∗ Recurrent or transient (not every state in a chain can be transient)

∗ Periodic (d, the largest integer such that the chain can only return to a state at
multiples of d is greater than 1) or aperiodic (d = 0)

– Ergodic: an irreducible (thus, recurrent) chain that is aperiodic

– n-step transition p
(n)
ij is conditional probability of state j after n steps from state i.

Compute as P (n) = Pn.

– Steady-state probability πj = limn→∞ p
(n)
ij > 0 exists in an ergodic chain (and is indepen-

dent of i). The probability the process is in state j after a large number of transitions.

– Computed via balance equations:

πj =
m−1∑
i=0

πi · pij ∀ j = 0, ...,m− 1 (1)

m−1∑
j=0

πj = 1 (2)

7 Lecture 18: Markov Decision Processes

• MDP model

– states S = {0, . . . ,m− 1}

– actions A = {0, . . . , n− 1}

– reward function R(s, a) (immediate reward for action a in state s)

– transition function P (s, a, s′) ∈ [0, 1] (conditional prob of transitioning to state s′ given
action a in state s)

• Policy µ: mapping from states to actions

– Deterministic (each state maps to single action)

6

– Stochastic (each state maps to distribution on actions)

• The MDP defines the problem to solve. Given an MDP, we need to solve and find the optimal
policy.

• For a particular policy, an MDP reduces to a Markov chain. An ergodic MDP is one for which
the associated Markov chain is ergodic for every possible policy.

• The expected total reward over the next t time periods when following policy µ from state s
is:

V (t)
µ (s) = Es1,...,st−1

[
R(s0, µ(s0)) +R(s1, µ(s1)) + . . .+R(st−1, µ(st−1))

]
, (3)

where s0 = s, and sτ denotes the state reached under policy µ after τ steps.

• The optimal policy from state s maximizes the MDP value function Vµ(s). The value function
defines the objective value of policy µ from state s.

• There are two possible definitions:

– Limit-average reward:

Vµ(s) = lim
t→∞

[
1

t
V (t)
µ (s)

]
, (4)

which is only well defined when state s is in a recurrent, aperiodic class. For an ergodic
MDP, the limit-average reward for policy µ from state s can be computed as

Vµ(s) =
∑
s′

R(s′, µ(s′))πµ(s′), (5)

where πµ(s′) is the steady state probability of state s′ under policy µ. Note: this does
not depend on state s.

– Expected discounted reward (for a discount factor γ, 0 < γ < 1):

Vµ(s) = Es1,s2,...
[
R(s0, µ(s0)) + γ ·R(s1, µ(s1)) + γ2 ·R(s2, µ(s2)) + . . .+

]
, (6)

where s0 = s, and sτ denotes the state reached under policy µ after τ steps.

• An LP can be formulated to maximize either the limit-average reward (for an ergodic MDP)
or the expected-discounted reward, in order to find an optimal policy. Optimal policies are
deterministic.

• Fundamental Theorem of MDPs: under the discounted reward criterion, there exists a policy
that is uniformly optimal (i.e., it is optimal from every state).

• This ‘uniform optimality’ is also true under the limit-average reward criterion for an ergodic
MDP.

7

