Lecture 15: Cutting plane methods

Lesson Plan

• Cut generation and the separation problem
• Cutting plane methods
• Chvátal-Gomory cuts
• Gomory’s cutting plane algorithm

Textbook Reading: 8.4
Convex Hull

- **Definition.** Given set $X \subseteq \mathbb{Z}^n$, the **convex hull** of $X = \{x^1, \ldots, x^t\}$ is $\text{conv}(X) = \{x : x = \sum_{k=1}^{t} \lambda_k x^k, \sum_{k=1}^{t} \lambda_k = 1, \lambda_k \geq 0 \text{ for all } k\}$

- **Prop.** $\text{conv}(X)$ is a polyhedron.

- **Prop.** Extreme points of $\text{conv}(X)$ all lie in X.

- **Prop.** Can solve IP via solving LP on $\text{conv}(X)$.

Challenge: May need exponential number of inequalities to describe $\text{conv}(X)$.

Cut Generation

- **Q:** What else can we do to improve the strength of formulations?

- **A:** *Automatically generate new inequalities (“cuts”) that approximate the convex hull.*

- Why this might be useful:
 - improve branch-and-bound (stronger formulation, and thus improved bounds)
 - provides a completely new way to solve IPs
• **Definition.** An inequality $a^T x \leq b$ is a **valid inequality** for set $X \subseteq \mathbb{R}^n$ if $a^T x \leq b$ for all $x \in X$.

• “keeps all integer solutions”

• **Definition.** An inequality $a^T x \leq b$ is a **valid inequality** for set $X \subseteq \mathbb{R}^n$ if $a^T x \leq b$ for all $x \in X$.

• **Defn.** A **cut** is a valid inequality that **separates** the current fractional solution x^*.

![Diagram showing valid and not valid inequalities for a set X.](image-url)
Cut strength

- **Definition.** Cut c is stronger than cut c' if $z^{LP} < z^{LP'}$, where LP includes c and LP' includes c'.

The Cutting-Plane Method

- **Step 1:** Solve LPR. Get x^*.
- **Step 2:** If x^* integral, **stop**. Else, find a valid inequality that excludes x^* (a “cut”)
- **Step 3:** Go to Step 1.

⇒ keep strengthening the formulation until the IP is solved
Questions

• How to generate strong cuts, and quickly?
• Will a cutting-plane algorithm always terminate with the optimal IP solution?

• For warm-up, let’s look at examples of valid inequalities.

Example 1

• $X = \{x \in \{0,1\}^5 : 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \leq -2\}$
• First: If $x_2 = x_4 = 0$, the LHS ≥ 0, and the solution is infeasible.
 – By integrality, a valid inequality is $x_2 + x_4 \geq 1$.
 – Does not remove any $x \in X$, so valid. Also: removes fractional solns eg., $x = (0, 1/3, 0, 1/3, 0)$.
• Second: If $x_2 = 0$ but $x_1 = 1$, the LHS ≥ 0, and the solution is infeasible.
 – By integrality, a valid inequality is $x_1 \leq x_2$.
 – Does not remove any $x \in X$, so valid. Also: removes fractional solns eg., $x = (2/6, 1/6, 0, 1, 0)$.
Example 2

- $X = \{(x,y) : x \leq 9999y, 0 \leq x \leq 5, x \in \mathbb{Z}, y \in \{0,1\}\}$
- $X = \{(0,0),(0,1),(1,1),(2,1),(3,1),(4,1),(5,1)\}$
- A **valid inequality** is $x \leq 5y$.
 - Does not remove any solutions in X, so valid.
 - Also: removes fractional solutions such as $(1,0.1)$.

Example 3

- $X = \{(x,y) : x \leq 10y, 0 \leq x \leq 14, y \in \mathbb{Z}_{\geq 0}\}$
- $x \leq 6+4y$ is valid. Doesn’t remove any solns in
Example 4 (Chvátal-Gomory inequality)

- Consider $X = \mathbb{P} \cap \mathbb{Z}^2$, where \mathbb{P} is given by

 $\begin{align*}
 7x_1 - 2x_2 &\leq 14 \\
 x_2 &\leq 3 \\
 2x_1 - 2x_2 &\leq 3 \\
 x &\geq 0
 \end{align*}$

- Valid to form a non-neg, linear combination of inequalities. Eg., multipliers $u=(2/7, 37/63, 0)$. Obtain:

 $2x_1 + \frac{1}{63}x_2 \leq \frac{121}{21}$

- Since $x \geq 0$, valid to round coeffs on LHS down:

 $2x_1 + 0x_2 \leq \frac{121}{21}$

- Because LHS is integral for all $x \in X$, valid to round RHS down to nearest integer. Obtain:

 $2x_1 + 0x_2 \leq 5$

Notes:

(a) Important that X is integers
(b) Applies to "\leq" inequalities
(c) The result of steps (1) and (2) is implied by \mathbb{P} and is weaker. But the integrality on the LHS allows step 3 to tighten.
General Approach to CG Inequality

\[X = P \cap \mathbb{Z}^n, P = \{ x \in \mathbb{R}^n_{\geq 0} : Ax \leq b \}, \text{ some } u \in \mathbb{R}^m_{\geq 0} \]

Three steps:
(i) Combine rows of \(A \) with nonnegative weights \(u \). This is valid for \(X \). Obtain an “\(\leq \)” inequality.
(ii) Take the floor of coefficients on LHS. This is a valid inequality for \(X \) because \(x \geq 0 \).
(iii) LHS has integer value => valid to take the floor of the RHS. [The LHS has integer values because coeffs and \(x \) are integer.]

• **Theorem.** Given any fractional, extreme point \(x^* \) of \(P \), there exists multipliers \(u \geq 0 \) s.t. the CG inequality is a cut (for \(x^* \)).

=> CG cuts are complete for IP!! In principle we can solve IPs by repeated CG cuts.

But:
• How many CG cuts do we need to generate?
• How do we generate the cuts?
Answer: Use Gomory’s algorithm

- CG inequalities are valid for any integer program with “≤” and non-neg, integer decision variables.
- Gomory’s algorithm uses CG inequalities in a particular way. It can only be applied to an integer program with integer coeffs and integer RHS’s.

 (WLOG for rational problem: achieve by rescaling)

- It generates CG cuts, and provably converges to the optimal IP solution.
- Uses the simplex tableau, generates a cut from any row with a fractional RHS value.
- No fractional rows left => a {0,1} solution!

Gomory's cutting plane algorithm

Example (Gomory’s algorithm)

• For an IP with $A \in \mathbb{Z}^{mn}$ and $b \in \mathbb{Z}^m$.

• For example:

$$z = \max 4x_1 - x_2$$
\[\text{s.t.} \quad 7x_1 - 2x_2 \leq 14\]
\[x_2 \leq 3\]
\[2x_1 - 2x_2 \leq 3\]
\[x_1, \quad x_2 \geq 0, \text{ integer}\]

• Introduce slack variables x_3, x_4 and x_5.
 - A and b integer: therefore, we can insist that slack variables are non-negative, integer.
Generating a CG cut

Optimal tableau:

- $z \quad +\frac{4}{7} x_3 + \frac{1}{7} x_4 = \frac{59}{7}$
- $x_1 \quad +\frac{1}{7} x_3 + \frac{2}{7} x_4 = \frac{20}{7}$
- $x_2 \quad + x_4 = 3$
- $-\frac{2}{7} x_3 + \frac{10}{7} x_4 + x_5 = \frac{23}{7}$

- $B=\{1, 2, 5\}$ and $x^*=(\frac{20}{7}, 3, 0, 0, \frac{23}{7})$
- Form a CG-cut from any row with a fractional RHS.
 - “u” vector puts 1 on this row, 0 on other rows.
 - apply CG procedure to the “≤” inequality implied by the equality (CG is defined for “≤” inequalities).
- Suppose we choose x_1 row. The CG cut is:
 - $x_1 + 0x_3 + 0x_4 \leq 2$

Optimal tableau:

- $z \quad +\frac{4}{7} x_3 + \frac{1}{7} x_4 = \frac{59}{7}$
- $x_1 \quad +\frac{1}{7} x_3 + \frac{2}{7} x_4 = \frac{20}{7}$
- $x_2 \quad + x_4 = 3$ \hspace{1cm} (1)
- $-\frac{2}{7} x_3 + \frac{10}{7} x_4 + x_5 = \frac{23}{7}$

- Add CG cut from x_1 row (convenient to negate):
 - $-x_1 \geq -2$ \hspace{1cm} (a)

- Will want to isolate current basis. (1) + (a):
 - $\frac{1}{7}x_3 + \frac{2}{7}x_4 \geq \frac{6}{7}$ \hspace{1cm} (b)

- Add non-neg, integer excess var $x_6 \geq 0$:
 - $\frac{1}{7}x_3 + \frac{2}{7}x_4 - x_6 = \frac{6}{7}$ \hspace{1cm} (c)

- Note: x_6 integer because LHS-RHS in (a) is integer, also true for (b) since (1) is an equality.
• Add (c) and re-optimize.
• New optimal tableau:

\[
\begin{align*}
 z &= \frac{1}{2}x_5 + 3x_6 = \frac{15}{2} \\
 x_1 &= x_6 = 2 \\
 x_2 &= -\frac{1}{2}x_5 + x_6 = \frac{1}{2} \\
 x_3 &= -x_5 - 5x_6 = 1 \\
 x_4 &= \frac{1}{2}x_5 + 6x_6 = \frac{5}{2}
\end{align*}
\]

• \(B=\{1,2,3,4\}\) and \(x^*=(2, 1/2, 1, 5/2, 0, 0)\)

• Add another CG cut. Use a general rule to go from fractional tableau to a new cut.
General Rule for Deriving a Cut

• For row i with fractional RHS, the CG cut is\
\[\sum_{j \in B'} (\bar{a}_{ij} - [\bar{a}_{ij}]) x_j \geq \bar{b}_i - [\bar{b}_i] \]

Example 1:
• \(z + \frac{4}{7} x_3 + \frac{1}{7} x_4 = \frac{59}{7} \)
 \(x_1 + \frac{1}{7} x_3 + \frac{2}{7} x_4 = \frac{20}{7} \)
 \(x_2 + x_4 = 3 \)
 \(-\frac{2}{7} x_3 + \frac{10}{7} x_4 + x_5 = \frac{23}{7} \)

• \(B = \{1, 2, 5\} \)
• Cut \(\frac{1}{7} x_3 + \frac{2}{7} x_4 \geq \frac{6}{7} \)

General Rule for Deriving a Cut

Example 2:
• \(Z + \frac{1}{2} x_5 + 3 x_6 = \frac{15}{2} \)
 \(x_1 + x_6 = 2 \)
 \(x_2 - \frac{1}{2} x_5 + x_6 = \frac{1}{2} \)
 \(x_3 - x_5 - 5 x_6 = 1 \)
 \(x_4 + \frac{1}{2} x_5 + 6 x_6 = \frac{5}{2} \)

• \(B = \{1, 2, 3, 4\} \)
• Cut \(\frac{1}{2} x_5 \geq \frac{1}{2} \) (\(\frac{1}{2} = -\frac{1}{2} - (\lfloor -\frac{1}{2} \rfloor) = -\frac{1}{2} - (-1) = \frac{1}{2} \))
• Add (c) and re-optimize.
• New optimal tableau:

\[
\begin{align*}
\text{z} & \quad + \frac{1}{2}x_5 + 3x_6 = 15/2 \\
x_1 & \quad + x_6 = 2 \\
x_2 & \quad - \frac{1}{2}x_5 + x_6 = \frac{1}{2} \\
x_3 & \quad - x_5 - 5x_6 = 1 \\
x_4 & \quad + \frac{1}{2}x_5 + 6x_6 = 5/2 \\
\end{align*}
\]

• \(B = \{1, 2, 3, 4\} \) and \(x^* = (2, 1/2, 1, 5/2, 0, 0) \)
• Add CG cut \(\frac{1}{2}x_5 \geq \frac{1}{2} \)
• Bring in integer, non-neg excess var \(x_7 \).

\[
\frac{1}{2}x_5 - x_7 = \frac{1}{2}
\]

(d)

• Add (d) and re-optimize. New tableau:

\[
\begin{align*}
\text{z} & \quad + 3x_6 + x_7 = 7 \\
x_1 & \quad + x_6 = 2 \\
x_2 & \quad + x_6 - x_7 = 1 \\
x_3 & \quad - 5x_6 - 2x_7 = 2 \\
x_4 & \quad + 6x_6 + x_7 = 2 \\
x_5 & \quad - x_7 = 1 \\
\end{align*}
\]

• \(x^* = (2, 1, 2, 2, 1, 0, 0) \)

• Integral! \((x_1, x_2) = (2, 1)\) solves the original IP.

• Map the cuts back to the \((x_1,x_2)\) space
• First cut: \(x_1 \leq 2\)
• Second cut: \(\frac{1}{2}x_5 \geq \frac{1}{2}\). Substituting for \(x_5 = 3-2x_1 + 2x_2\), rearrange and obtain \(x_1 - x_2 \leq 1\).
Summary: Gomory’s algorithm

• Repeat:
 – Solve LP.
 – If integral, STOP. Else, generate a CG-cut from any row with fractional RHS.

• Thm. Gomory’s algorithm will solve an IP with integer coefficients and integer RHS values.

Gomory’s algorithm

• Not of practical interest, but transformative method!
• Can solve IPs without branch and bound, and inspired effort into identifying families of strong cuts.
• With some work, can extend to solve mixed IPs
Summary: Cutting plane method

• Cuts are valid inequalities that separate the current optimal, fractional solution
• The cutting-plane method
• Chvatal-Gomory cuts for IPs (they are complete!)
• Gomory’s cutting plane method
 – Solves IPs without branch and bound
 – Works on IPs with integer coefficients and integer RHS.