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AM 121: Intro to Optimization
Models and Methods

Fall 2016

David C. Parkes

Lecture 6: Phase I, degeneracy, 
smallest subscript rule. 

Lesson Plan
• Review: simplex method, proof of termination
• Phase 1 (initialization)
• Degeneracy, cycling, smallest subscript rule.
• The Fundamental Theorem of Linear 

Programming.

Textbook Readings: 3.7 and 3.8
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Review: A Tableau
max z

s.t. z - cT x =0
Ax=b

x≥0

•Definition. The tableau for basis B is a system of 
eqns where the basic variables are isolated.

•For basis B (with B’=N \ B) the tableau is:

z + c̄

T
B0xB0 = v̄

IxB + ĀB0
xB0 = b̄

Example
• max  z = x1 + x2
• s.t.          x1 <= 2

x1 + 2x2 <= 4     
x1,    x2 ≥ 0

• max  z = x1 + x2
• s.t.          x1 + x3 = 2

x1 + 2x2 + x4 = 4
x1,       x2,       x3,   x4 ≥ 0

• Initial tableau (for basis {3,4}):
z  - x1 - x2 = 0

x1 + x3 = 2
x1 + 2x2 + x4 = 4



3

Example of Simplex Method
z - x1 - x2 = 0 Basic   x3 x4

x1 + x3 = 2 Ratio   2/1   4/1
x1 + 2x2 + x4 = 4

z - x2 + x3 = 2 Basic   x1 x4

x1 + x3 = 2 Ratio         2/2
2 x2   - x3 +x4 = 2 

z + ½ x3 + ½ x4 =  3    
x1 +     x3 =  2

x2 – ½ x3 + ½ x4 = 1

• Solution: (x1,x2,x3,x4)=(2,1,0,0), z=3.

x1 to enter. x3 to leave. pivot(3,1)

x2 to enter. x4 to leave. pivot(4,2)

Basic   x1 x2

Reduced costs all nonnegative. 
Stop!

Comments

• 1. We need to be able to find an initial 
tableau corresponding to a BFS

• 2. ck is the reduced cost of nonbasic variable xk. 
Amount by which z decreases when xk increases 
(and so ck<0 is good).
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3. Unboundedness
• xi  + åj B’ aijxj = bi (for all i B)
• Because other nonbasic vars = 0, we can 

increase xk while:
xi = bi – aik xk ≥ 0 (for all i B)

• If aik ≤ 0 for every i in B, then xk can increase 
without bound (without affecting objective)!

2 2

2

4. Pivoting to the new Tableau
• Definition. A pivot on (r,k) is row operations to 

construct tableau for B:=B {k}\{r}. 
• (a) Divide row xr + åj B’arjxr=br through by ark so 

that coefficient of new basic variable xk becomes 1.   
(Why does RHS of row r remain nonnegative?)

• (b) Add/subtract multiples of this adjusted row to all 
other equations (including objective) to remove xk

(Why do these operations not affect isolation of other basic vars?)

[

A: the only basic variable with non-zero coefficient in row r is xr

(Why does the RHS of the other rows remain nonnegative?)

A: the coefficient ark is strictly positive! 

A: for a row r’ with positive coefficient ar’k we subtract multiple ar’k/ark of 
row r, and  (ar’k/ark)br ≤ br’k by the ratio test. 

2

[Note: we’re doing “Gauss-Jordan elimination.”]
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Degeneracy
• A BFS is degenerate if a basic variable xi has 

value zero.
• Ratio test. t* = min{ bi/aik : i B, aik>0}. Pick leaving 

index r B with min ratio. 

• If aik > 0 and bi= 0, then simplex method cannot 
make the entering variable xk increase in value.

• Move to an adjacent basis, but without 
improving objective. 

• Ignore this possibility for a moment.

2
2

Simplex Termination

• Theorem. Simplex method terminates with an 
optimal solution, or a proof of unboundedness, as 
long as never reaches a degenerate BFS. 

• Proof. Suppose LP is not unbounded. 
– In every iteration the value of the entering variable xk:=t*>0, 

and objective strictly increases. 
=> cannot visit same BFS twice. 
=> terminates, since finite number of BFS. 

– If unbounded: must reach a tableau that is adjacent to 
one in which can increase objective without bound. 
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Remaining Issues

• How to find a first BFS to initialize the 
simplex method?

• How can we be sure the simplex method will 
terminate even if there may be degenerate 
BFSs?

Finding an initial BFS 
• Easy case: If our initial LP in standard inequal. form 

max  cT x
s.t. Ax ≤ b

x ≥ 0
and b ≥ 0, can transform into canonical form by 
introducing slack variables.

• Example:
max   x1 +  x2

s.t. x1 ≤ 2
x1 + 2x2 ≤ 4
x1,     x2 ≥ 0

z  - x1 - x2 = 0
x1 + x3 = 2
x1 +  2x2 + x4 = 4
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• LP with +ve RHS, but may have ≥ and = constraints
max 2x1 + x2
s.t. x1  +  x2 ≤ 3

-x1 +  x2 ≥ 1
x1, x2 ≥ 0

• Don’t have a basis. Not even sure if feasible!
• Introduce “artificial variable” x5 ≥ 0. 

-x1 + x2 – x4 + x5 = 1
• Auxiliary LP:

• Lemma. (1) feasible iff (2) has optimal soln with x5=0
(è) can set x5=0 in (2)
(ç) if opt soln with x5=0, then x1…x4 feasible for (1)

Initialization: General case

max 2x1 + x2 (1)
s.t.     x1 + x2 + x3 = 3

- x1 + x2 – x4 = 1
x1,   x2,   x3,     x4 ≥ 0

min    x5 (2)
s.t. x1 + x2 + x3 = 3

- x1 + x2 – x4 + x5 = 1
x1,   x2,   x3,   x4,   x5 ≥ 0

• Introduce artificial variables in “≥” and “=” rows. Solve 
auxiliary problem to check feasibility

• max    w
s.t.      w + x5 = 0     (a)

x1 + x2 + x3 = 3 (b)
-x1 + x2 –x4 + x5 = 1 (c)
x1, …,         x5 ≥ 0 

• Why did this help? Easy BFS for auxiliary LP! 
• x3 but not x5 isolated. To isolate x5 can use (a) - (c).
• Get tableau for B={3,5}:

w + x1 - x2 + x4 =  -1
x1 +  x2 + x3 =   3
-x1 +  x2 - x4 +x5 =  1     

• Can now solve with simplex. If obtain w=0, can find an 
initial BFS for original problem.

Phase 1 of the simplex method
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Phase 1-Phase 2 Example (1 of 2)
w + x1 - x2 + x4 =  -1    (a)       Basic   x3 x5

x1 +  x2 + x3 =  3     (b)       Ratio   3/1   1/1
-x1 +  x2 - x4 +x5 =  1     (c)

w + x5   = 0 (*)
2x1 +x3 +x4   - x5 = 2
-x1 + x2            - x4   +x5    = 1 

• Can we find a BFS for original LP? 
• Drop (*) and x5 (since x5=0), and obtain system:

2x1 +x3 + x4 =  2
-x1 + x2 – x4 = 1

As long as final BFS is non-degenerate, x5 (=0) will be non-
basic and we have a basis for the original LP ({2,3}).

x2 to enter, x5 to leave

B={2,3}. Optimal. 
x=(0,1,2,0,0); w=0 

z - 2x1 - x2 =  0     (a)   <- original obj
2x1 + x3 + x4 =  2     (b)       
-x1 +  x2 - x4 =  1     (c)

• Need to isolate {x2,x3}. Do (a) + (c). Now begin Phase 2.

z - 3x1 - x4 =  1 Basic  x2 x3
2x1 +x3 +x4   = 2 Ratio       2/2
-x1 + x2            - x4       = 1 

z + ½ x3 + ½ x4 = 4
x1 + ½ x3 + ½ x4 = 1

x2 + ½ x3 – ½ x4 = 2

Phase 1-Phase 2 Example (2 of 2)

Pick x1 to enter. x3 leaves.

B={1,2}. 
Optimal. x=(1,2,0,0). 
z=4
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Summary: Phase 1
• Introduce artificial variables in “≥” and “=” rows 

• Solve auxiliary LP to find solution with all artificial 
variables taking on value zero

• If exists, then this solution provides a BFS for the 
original LP. Else, original LP is infeasible.

• A key property of the auxiliary LP is that it has a 
BFS that is easy to identify.

Degeneracy
• Definition. A basic solution is degenerate when 

one or more basic variables have value zero.
• Definition. A tableau is degenerate when one or 

more RHS values bi have value zero

• Whenever we have to choose between several leaving 
indices, the next tableau is degenerate…
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• max 2x1 + x2
s.t. x1 – x2 ≤ 1

x1 ≤ 1
x2 ≤ 1

x1,   x2 ≥ 0

•Initial tableau (non degenerate):
z – 2x1 – x2 = 0

x1 – x2 + x3 = 1
x1 + x4 = 1

x2 + x5 = 1

B={3,4,5}
x=(0,0,1,1,1)

Example (Degeneracy)

z – 2x1 – x2 =  0 Basic   x3,    x4,    x5
x1 – x2 + x3 =  1 Ratio   1/1   1/1
x1 +  x4 =  1 

x2 + x5 =  1

z – 3x2 +2x3 = 2 Basic   x1,    x4,    x5
x1 – x2 + x3 = 1 Ratio           0/1   1/1

x2 – x3 + x4 = 0 
x2 + x5 = 1

z – x3 + 3x4 = 2 Basic x1,  x2,  x5
x1 + x4            = 1 Ratio             1/1

x2 – x3 + x4 = 0
x3   – x4 + x5 = 1

Basis and tableau has changed, but BFS and obj value unchanged

z +2x4 + x5 = 3
x1 + x4 = 1

x2 + x5  = 1
x3 – x4 + x5 = 1

Example (Degeneracy)

x1 to enter, x3 to leave (tie break)

x=(1,0,0,0,1)
x4=0. degenerate!
x2 to enter, x4 to leave

x=(1,0,0,0,1)
x2=0. degenerate!
x3 to enter, x5 to leave

Basic x1,  x2,  x3
x=(1,1,1,0,0)

Optimal solution! Was OK here J
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• 5 vars, 3 equations. Each basic solution adds n-m=2 
additional binding constraints (nonbasic vars = 0), implies 
unique solution. 

• Degeneracy occurs when more than (n-m) constraints 
intersect at an extreme point (e.g., point (1,0).) 

x1-x2 ≤ 1

x2

x110

1

10
2

3

x2≤1
x1≤1

Non basic Binding
x1, x2 x1=0, x2=0
x2, x3 x2=0, x1-x2=1
x3, x4 x1-x2=1, x1=1
x4, x5 x1=1, x2=1

Degeneracy and Cycling
• Will simplex method terminate?
• Objective value does not strictly increase at each 

iteration. Earlier proof fails.

• Definition. The simplex method cycles when it 
returns to the same tableau
– E.g., T0 è T1 è … è Tp-1 è T0

• In this case, simplex method would cycle forever! 
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From “method” to algorithm:
• Need to make precise remaining design choices

• Choice of entering index:
– most negative reduced cost: choose k B’ with smallest ck
– smallest subscript: choose smallest index k B’ with ck<0
– random: choose any k B’ with ck<0

• Choice of leaving index: (may be a tie)
– smallest subscript: choose smallest index r R
– random: choose any r R

2
2

2

2
2

A Bad Rule
1. Pick the entering variable with the most negative 
reduced cost (break ties according to index)
2. Pick the exiting variable with the smallest index
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Cycling example
• max 10x1 – 57x2 – 9x3 -24 x4

s.t.   0.5x1 – 5.5x2 – 2.5x3 + 9x4 ≤ 0
0.5x1 – 1.5x2 – 0.5x3 +   x4 ≤ 0

x1 ≤ 1
x1, x2, x3, x4 ≥ 0

• Put in canonical form: 
z – 10x1 +   57x2 +    9x3 + 24x4 = 0     x5 x6 x7

0.5x1 – 5.5x2 – 2.5x3 +   9x4 + x5 = 0   0/0.5  0/0.5 1/1
0.5x1 – 1.5x2 – 0.5x3 +     x4 + x6 = 0     

x1 + x7 = 1

z – 53x2 – 41x3 +204x4 + 20x5 = 0    x1 x6 x7
x1 – 11x2 – 5x3 +18x4 + 2x5 = 0         0/4  1/11

4x2 + 2x3 – 8x4 – x5 +x6 = 0
11x2 + 5x3 – 18x4 – 2x5 +x7 = 1

optimal solution
x=(1,0,1,0), value 1

(Chvatal ’83)

x1 x2 x7
0/.5  0/.5

x3 x2 x7
0/2

x3 x4 x7
0/.5  0/.25 

x5 x4 x7
0/1 

where
we started!!

x5 x6 x7
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Smallest subscript rule 
• Entering: amongst those with strictly negative 

reduced cost, pick var with smallest index.
• Exiting: amongst those with min ratio, pick 

variable with smallest index.

• Bland’s Theorem. If the simplex method uses 
the smallest subscript rule then it will terminate.

• Proof: See Chvatal “Linear Programming” 1983

Fundamental Theorem of LP

• Theorem.  Any LP has either an optimal 
solution, is infeasible, or is unbounded.

• Proof (sketch):
– Case 1: Feasible. (Ok!)
– Case 2: Unbounded. (Ok!).
– Case 3: Feasible and bounded. Convert to standard 

equality form. Appeal to simplex lemma.

• Note: some optimization problems do not have this 
property, e.g. min 1/x s.t. x≥1
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Simplex lemma
• Consider an LP in standard equality form (max cTx

s.t. Ax=b, x≥0) with columns of A that span.

• Lemma. If an LP in standard equal. form is feasible 
and bounded, then it has an optimal solution.

• Proof. (sketch) 
– If feasible then LP has a BFS (use Phase 1 with smallest 

subscript rule; must terminate with optimal  value zero.)
– Obtain BFS for original LP from final tableau of Phase 1 

(need columns of A to span for this)
– Simplex with smallest subscript rule for Phase 2. Must 

terminate. Since not unbounded, must terminate with 
optimal solution.

Comments on Optimality 
• Consider a BFS x. 
• If the reduced costs are non-negative, then x is 

optimal. This is true whether or not x is degenerate. 
Thus, it is a sufficient test.

• If x is optimal and nondegenerate then the reduced 
costs will be non-negative. But, a degenerate BFS 
x can be optimal with negative reduced costs! 

• There is no simple test for determining whether a 
degenerate BFS is optimal.

• The simple test of non-negative reduced costs is 
sufficient for the simplex method: Bland’s theorem 
tells us that this optimality test ensures termination, 
even in the presence of degeneracy.
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Comments on Unique 
Optimality 

• Consider a BFS x. 
• If the reduced costs are positive, then x is the 

unique optimal solution. This is true whether or not 
x is degenerate. It is a sufficient test.

• If BFS x is optimal and nondegenerate then the 
reduced costs will be positive. 

• But, a degenerate BFS x can be the unique optimal 
solution but have non-positive reduced costs. 

• There is no simple test for determining whether a 
degenerate BFS is unique optimal.

Handling Degeneracy in Phase 1?

• Phase 1 must terminate with non-degenerate basic 
solution to be able to construct BFS for original LP

• Phase 1 may terminate with artificial variable ui=0, 
but basic. Suppose equation is åj=1 aijxj + ui=0

• If aij=0 for all j then can delete entire equation 
(redundant constraint)

• Else, some aij≠0. Pivot on entry (i,j), cause xj to 
become basic and variable ui to become nonbasic. 

• Repeat this process until all artificial variables are 
“driven out” of the (phase 1) basis.

n

(Advanced topic)
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Summary: Simplex method
• Phase 1 (auxiliary LP) can be formulated to 

find an initial BFS 
• Degeneracy (basic variables taking on value 

zero) occurs when more than n-m constraints 
intersect on a feasible point

• Cycling can be prevented through the 
smallest subscript rule. 

• Fundamental thm. of LP: Every LP has an 
opt. solution, is infeasible, or is unbounded.


