AM 121: Intro to Optimization

Models and Methods
Fall 2016

Lecture 6: Phase |, degeneracy,
smallest subscript rule.

David C. Parkes

Lesson Plan

» Review: simplex method, proof of termination
» Phase 1 (initialization)
» Degeneracy, cycling, smallest subscript rule.

« The Fundamental Theorem of Linear
Programming.

Textbook Readings: 3.7 and 3.8



Review: A Tableau

max z
st.  z-¢'x=0
Ax=b
x=0

*Definition. The tableau for basis B is a system of
egns where the basic variables are isolated.

*For basis B (with B’=N \ B) the tableau is:

4 +5£,x3/ =

v
Ixp ‘|’AB’xB’ =b

Example
* max z=x; tX,
* s.t. X, <=2
X, +2x, <=4
X, X5 20

*max z=x; t X,

s.t. X, + X, 2
X; +2x, +x, =4
X1 X2s X3, X4 20

Initial tableau (for basis {3,4}):

Z-X - X =

X, + X3 =
X; T 2x, +x, =



Example of Simplex Method

Z -X| - Xy =0
< tx S
X1+2X2 +X4—4
z - Xy + X3 =2
X1 + x5 =2
<€ 2X2-X3 +X4=2
A
z +Yexs3+Vax,= 3
X1 + X3 =2

Xy —1/2X3+1/2X4=1

Basic X3 X4
Ratio 2/1 4/1

x; to enter. x; to leave. pivot(3,1)

Basic x; x4
Ratio 2/2

x, to enter. x4 to leave. pivot(4,2)

Basic x; x,

Reduced costs all nonnegative.
Stop!

« Solution: (x,,x,,X3,X,)=(2,1,0,0), z=3.

Comments

* 1. We need to be able to find an initial
tableau corresponding to a BFS

» 2. Cis the reduced cost of nonbasic variable x,.
Amount by which z decreases when x; increases

(and so ¢,<0 is good).



3. Unboundedness

« X T Xjp 34X = b (for all i<B)
» Because other nonbasic vars = 0, we can
increase x; while:

Xi:bi_gik X 20 (fOr all |€B)

- If a; < 0 for every i in B, then x, can increase
without bound (without affecting objective)!

4. Pivoting to the new Tableau

 Definition. A pivot on (r,k) is row operations to
construct tableau for B:=BU{k}\{r}.

» (a) Divide row x, + X g 8,X=b, through by 3, so
that coefficient of new basic variable x, becomes 1.

(Why does RHS of row r remain nonnegative?)
A: the coefficient ay is strictly positive!

 (b) Add/subtract multiples of this adjusted row to all
other equations (including objective) to remove x,
(Why do these operations not affect isolation of other basic vars?)
A: the only basic variable with non-zero coefficient in row r is x,

(Why does the RHS of the other rows remain nonnegative?)
A: for a row r’ with positive coefficient arx we subtract multiple arw/an of
rowr, and (arw/a)br <Dy« by the ratio test.

[Note: we’re doing “Gauss-Jordan elimination.”]



Degeneracy

A BFS is degenerate if a basic variable x; has
value zero.

* Ratio test. t" = min{ b/a, : ieB, &,>0}. Pick leaving
index reB with min ratio.

- If a, > 0 and b= 0, then simplex method cannot
make the entering variable x, increase in value.

* Move to an adjacent basis, but without
improving objective.

* Ignore this possibility for a moment.

Simplex Termination

* Theorem. Simplex method terminates with an
optimal solution, or a proof of unboundedness, as
long as never reaches a degenerate BFS.

* Proof. Suppose LP is not unbounded.

— In every iteration the value of the entering variable x,:=t">0,
and objective strictly increases.
=> cannot visit same BFS twice.
=> terminates, since finite number of BFS.

— If unbounded: must reach a tableau that is adjacent to
one in which can increase objective without bound.



Remaining Issues

* How to find a first BFS to initialize the
simplex method?

* How can we be sure the simplex method will

terminate even if there may be degenerate
BFSs?

Finding an initial BFS

» Easy case: If our initial LP in standard inequal. form

max c' x
s.t. Ax<b
x>0

and b >0, can transform into canonical form by
introducing slack variables.

* Example:
max X, + X,
s.t. x4 <2 zZ-X - X 2: 0
= X TX; =
Xp +2x,=4 X, +2x,  +x, =4

X1, X, 20



Initialization: General case

LP with +ve RHS, but may have = and = constraints

max 2X1 + Xo < max 2X1 + X2 (1)
st. X+ X =3 st Xy+Xx2+Xx3 =3
1y 2 = X‘], X2, X3) X4 Z 0

Don’t have a basis. Not even sure if feasible!
Introduce “artificial variable” x5= 0.

X1+ Xo—Xg4+ X5=1
Auxiliary LP:

min  Xs (2)
s.t. X1+ Xy + X3 =3
-X1+ X —X4+X5=1

X1, X, X3, X4, Xs =20
Lemma. (1) feasible iff (2) has optimal soln with x5=0
(=) can set x5=0in (2)
(€) if opt soln with x5=0, then x4...x4 feasible for (1)

Phase 1 of the simplex method

[ ”

Introduce artificial variables in “=” and “=" rows. Solve
auxiliary problem to check feasibility

max w

st. w +x5 =0 (a)
X1+ Xy + X3 =3 b
-Xq + Xo X4+ X5 =1 c
X1, veey X5 =20

Why did this help? Easy BFS for auxiliary LP!
x3 but not x5 isolated. To isolate x5 can use (a) - (c).

Get tableau for B={3,5}:

W+X; - X + X4 = -1
X1 t Xo + X3 = 3
-Xq + Xo - X4 +X5 =1

Can now solve with simplex. If obtain w=0, can find an
initial BFS for original problem.



Phase 1-Phase 2 Example (1 of 2)

W+Xy - X + Xq4 = -1 (a) Basic X3 Xs
X1 + Xo+ X3 =3 (b) Ratio 3/1 1/1
<€ -X1 + - Xq4 X5 = 1 (c) x2 to enter, xs to leave
w +Xx5 =0 ™) B={2,3}. Optimal.
2X1 +X3 tX4 - X5 = 2 _ . py—
Xq + Xo SXg X =1 x=(0,1,2,0,0); w=0

« Can we find a BFS for original LP?

» Drop (*) and x5 (since x5=0), and obtain system:
2X4 X3+ X, = 2
-X1 + Xy -X, =1

As long as final BFS is non-degenerate, x5 (=0) will be non-
basic and we have a basis for the original LP ({2,3}).

Phase 1-Phase 2 Example (2 of 2)

Z-2Xq = X =0 (a) <- original obj
2X1 + X3+ X4 = 2 (b)
-X1 + Xo -X4 =1 (C)

* Need to isolate {x,,x3}. Do (a) + (c). Now begin Phase 2.

Z - 3X4 -X4 =1 Basic x, Xj3
€ 2X1 tX3 tX4 = Ratio 2/2
X1 + Xo -Xg =1 Pick x1 to enter. x3 leaves.
z + % X3 +/2X=4 B={1,2}.
X4 + %2 Xz + Va X4 = 1

Optimal. x=(1,2,0,0).
X2 +1/2X3 —1/2X4=2 z=4



Summary: Phase 1
« Introduce artificial variables in “>” and “=" rows

« Solve auxiliary LP to find solution with all artificial
variables taking on value zero

« If exists, then this solution provides a BFS for the
original LP. Else, original LP is infeasible.

» A key property of the auxiliary LP is that it has a
BFS that is easy to identify.

Degeneracy

+ Definition. A basic solution is degenerate when
one or more basic variables have value zero.

* Definition. A tableau is degenerate when one or
more RHS values b; have value zero

* Whenever we have to choose between several leaving
indices, the next tableau is degenerate...



Example (Degeneracy)

. max 2x1 + Xo
st. Xx1—x=1
X1 <1
X <1
X1, XQZO

«Initial tableau (non degenerate):

Z— 2X1 — Xp
X1 —Xo + X3
X1 + X4
X2

Example (Degeneracy)

Z—2X{— Xo =0
( — Xo + X3 =1
X4 + Xy =1
A Xo tx, =1
z — 3x, +2x3 =2
Xy —Xo +X3 =1
( —X3+X4 =0
X2 +X5=1
A
z —X3 + 3%y =2

X1 Xy

X2 — X +X4

1
0
1

B={3,4,5)
x=(0,0,1,1,1)

Basic X3, X4, Xs
Ratio 1/1 11

X1 to enter, x3 to leave (tie break)

Basic x4, X4, Xs
Ratio 01 11
x=(1,0,0,0,1)

x4=0. degenerate!

X2 to enter, x4 to leave

Basic x4, Xy, Xg
Ratio 11
x=(1,0,0,0,1)

x2=0. degenerate!

X3 to enter, x5 to leave

Basis and tableau has changed, but BFS and obj value unchanged

z +2x4 + X5=3
X1 + X4 =1
X2 +X5=1
Xz—X4 +X5=1

Basic X1, X2, X3
x=(1,1,1,0,0)

Optimal solution! Was OK here ©

10



X1s1

X2
A ‘ Xo<1
1
Non basic  Binding @

X1, Xo x1=0, x,=0 Xq-Xo <1
Xo, X3 Xo=0, X4-Xo=1
X3, Xg X1-X2=1, X1=1 ()
X4, X5 X1=1, X2=1 @

o T

» 5vars, 3 equations. Each basic solution adds n-m=2
additional binding constraints (nonbasic vars = 0), implies
unique solution.

» Degeneracy occurs when more than (n-m) constraints
intersect at an extreme point (e.g., point (1,0).)

Degeneracy and Cycling

» Will simplex method terminate?

» Obijective value does not strictly increase at each
iteration. Earlier proof fails.

» Definition. The simplex method cycles when it
returns to the same tableau
- Eg, To -> T1 2> ... Tp_1 -> To

* In this case, simplex method would cycle forever!

11



From “method” to algorithm:

* Need to make precise remaining design choices

» Choice of entering index:
— most negative reduced cost: choose kEB’ with smallest ¢
— smallest subscript: choose smallest index keB’ with ¢,<0
— random: choose any keB’ with ¢,<0

» Choice of leaving index: (may be a tie)
— smallest subscript: choose smallest index r€R
— random: choose any rcR

A Bad Rule

1. Pick the entering variable with the most negative
reduced cost (break ties according to index)

2. Pick the exiting variable with the smallest index

12



Cycling example

<€

<€

Q2

max 10x4 — 57x, —

s.t.

9X3 -24 X4

0.5X1 - 5.5X2 - 2.5X3 + 9X4 <0

0.5x4 —1.5x, = 0.5x3+ x4 <0

X1

X1, X2, X3, X4

Put in canonical form:
z—10x4+ 57X, + 9x3+ 24x,
— 55x,—2.5x3+ 9X4 + X5

<1
>0

(Chvatal ’ 83)

optimal solution
x=(1,0,1,0), value 1

=0

X5 Xg X7
=0 0/05 0/0.5 11

0.5X1 - 1.5X2 - 0.5X3 + Xa + Xg =0
X1 + X7 = 1
A
z — 53%, — 41x3 +204x, + 20x5 =0 X4 Xg X7
X1 =1%o — 5x3 +18x, + 2X5 =0 0/4 1/11
+ 2X3 - 8X4 — X5 *+Xg =0
11X2 + 5X3 — 18X4 - 2X5 +X7 = 1
A
—14.523 +98x,; +6.75x5 +13.25x4 0%, x2x7
Aoy —0.T5ws 4275w = 0,015 015
—0.5x4 +4x, +0.75x5 —2.75x¢ +x7 1
+291 —18z, —156x5 +93x6 = 0 ix3 % X7 |
211 +x3  —8xy —1.5xs +5.5xg = 0 i . 02 ..
—x; 4 +0.525 —2.516 - 0
X1 +x7 1
+202; 491y —10.525 +70.5x4 0 %3 Xy R
Sy ey twy [05n] An, = 6050025
—0.527 +0.529 +x4 +0.25x5 —1.25x6 = 0
1 +rr = 1
—227;  +93xy  +21ws —24x = 0 X X4 X7
—dxy 8ry 2y +rs  —9x6 =0 01 .
+0.521 —1.509 —0.bx3 “+a4 +x¢ = 0
X1 FT7 = 1 s,
102 +57vs  +923 +24a4 S I
0.5y —5.510 —2.5x3 +924 a5 = 0 where
0.527 —1.529 —0.523 44 +x6 = (0 we started!!
T +a7 1
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Smallest subscript rule

* Entering: amongst those with strictly negative
reduced cost, pick var with smallest index.

« Exiting: amongst those with min ratio, pick
variable with smallest index.

* Bland’s Theorem. If the simplex method uses
the smallest subscript rule then it will terminate.

» Proof: See Chvatal “Linear Programming” 1983

Fundamental Theorem of LP

 Theorem. Any LP has either an optimal
solution, is infeasible, or is unbounded.

* Proof (sketch):
— Case 1: Feasible. (Ok!)

— Case 2: Unbounded. (Ok!).

— Case 3: Feasible and bounded. Convert to standard
equality form. Appeal to simplex lemma.

» Note: some optimization problems do not have this
property, e.g. min 1/x s.t. x=1

14



Simplex lemma

Consider an LP in standard equality form (max c"x
s.t. Ax=b, x=0) with columns of A that span.

Lemma. If an LP in standard equal. form is feasible
and bounded, then it has an optimal solution.

Proof. (sketch)

— If feasible then LP has a BFS (use Phase 1 with smallest
subscript rule; must terminate with optimal value zero.)

— Obtain BFS for original LP from final tableau of Phase 1
(need columns of A to span for this)

— Simplex with smallest subscript rule for Phase 2. Must
terminate. Since not unbounded, must terminate with
optimal solution.

Comments on Optimality

Consider a BFS x.

If the reduced costs are non-negative, then x is
optimal. This is true whether or not x is degenerate.
Thus, it is a sufficient test.

If x is optimal and nondegenerate then the reduced
costs will be non-negative. But, a degenerate BFS
x can be optimal with negative reduced costs!
There is no simple test for determining whether a
degenerate BFS is optimal.

The simple test of non-negative reduced costs is
sufficient for the simplex method: Bland’s theorem
tells us that this optimality test ensures termination,
even in the presence of degeneracy.

15



Comments on Unique
Optimality
Consider a BFS x.

If the reduced costs are positive, then x is the
unique optimal solution. This is true whether or not
X is degenerate. It is a sufficient test.

If BFS x is optimal and nondegenerate then the
reduced costs will be positive.

But, a degenerate BFS x can be the unique optimal
solution but have non-positive reduced costs.

There is no simple test for determining whether a
degenerate BFS is unique optimal.

Handling Degeneracy in Phase 17
(Advanced topic)

Phase 1 must terminate with non-degenerate basic
solution to be able to construct BFS for original LP

Phase 1 may terminate with artificial variable u;=0,
but basic. Suppose equation is 2.4 a;x; + u=0

If 5ij=0 for all j then can delete entire equation
(redundant constraint)

Else, some a;#0. Pivot on entry (i,j), cause x; to
become basic and variable u; to become nonbasic.

Repeat this process until all artificial variables are
“driven out” of the (phase 1) basis.

16



Summary: Simplex method

* Phase 1 (auxiliary LP) can be formulated to
find an initial BFS

» Degeneracy (basic variables taking on value
zero) occurs when more than n-m constraints
intersect on a feasible point

» Cycling can be prevented through the
smallest subscript rule.

 Fundamental thm. of LP: Every LP has an
opt. solution, is infeasible, or is unbounded.
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