Lesson Plan

• Branch and Bound review
• Node selection
• Branching decision
• Formulation strength
• CPLEX and “Cut generation”
Review

\[\text{max } 5x_1 + 8x_2 \]
\[\text{s.t. } x_1 + x_2 \leq 6 \]
\[5x_1 + 9x_2 \leq 45 \]
\[x_1, x_2 \geq 0, \text{ integer} \]
Branch and Bound Method

• Maintain a list of open subproblems, an incumbent x with value z, and an upper bound \bar{z}

• **Node selection decision:** pick open subproblem and solve LP relaxation

• **Branching decision:** if can’t fathom the node, then pick a fractional variable and branch

• Continue until all open subproblems are fathomed, or “optimality gap” is acceptable.
Node selection Decision

- **Depth-first search** (solve a node just generated)
 - Find an integer solution quickly. This way, open subproblems can be “fathomed by bound.”
 - Can obtain next LP solution via **dual simplex pivots**, since branching adds or modifies a constraint.
- **Best-bound first** (solve node k with highest LPR z_k.)
 - (Upper bound on subproblem is inherited from parent)
 - Never solve a subproblem with an upper-bound less than the value of **optimal** integer solution.
 - Improve upper bounds quickly, try to prove optimality of current incumbent.
- In practice: initial DFS (“diving”) followed by a mix of best-bound and DFS is effective.

DFS will solve one of S^5 or S^6 “Best-bound first” will solve S^4 (since 41 > 40 5/9)
Example: Dual Pivots

• Optimal tableau for LPR of IP is
 \[
 \begin{align*}
 z &= 1.25x_3 + 0.75x_4 = 41.25 \\
 x_1 &= 2.25x_3 - 0.25x_4 = 2.25 \\
 x_2 &= 1.25x_3 + 0.25x_4 = 3.75
 \end{align*}
 \]
 (1)

• Consider LPR of \(S^2= S^0 \cap \{x_2 \geq 4\} \)

• Introduce excess variable \(x_5 \geq 0 \), and write \(x_2 \geq 4 \) as
 \[
 x_2 - x_5 = 4
 \]
 (2)

• Establish basis \(B=\{x_1, x_2, x_5\} \) by \((2)' = (1) - (2) \)

 \[
 -1.25x_3 + 0.25x_4 + x_5 = -0.25
 \]
 (2’)

Using Dual Pivots in BnB

• Initial tableau for LPR of \(S^2 \) is dual feasible:
 \[
 \begin{align*}
 z &= 1.25x_3 + 0.75x_4 = 41.25 \\
 x_1 &= 2.25x_3 - 0.25x_4 = 2.25 \\
 x_2 &= 1.25x_3 + 0.25x_4 = 3.75 \\
 -1.25x_3 + 0.25x_4 + x_5 &= -0.25
 \end{align*}
 \]

• Dual Pivot \((x_5 \text{ out, } x_3 \text{ in}) \). Get:
 \[
 \begin{align*}
 z &= x_4 + x_5 = 41 \\
 x_1 &= 0.2x_4 + 1.8x_5 = 1.8 \\
 x_2 &= -x_5 = 4 \\
 x_3 &= 0.2x_4 - 0.8x_5 = 0.2
 \end{align*}
 \]

• \(B=\{x_1, x_2, x_3\}, \; x_1^*=1.8, \; x_2^*=4, \; z^*=41 \)

• One pivot! In general will take more than one pivot, but can often find new LP solution quickly.
Aside: Weak Dual Pairs

• Consider
 Primal: \(\max \{ c(x) : x \in X \} \)
 Dual: \(\min \{ w(y) : y \in Y \} \)
• Form a weak dual pair if \(c(x) \leq w(y) \), \(\forall x \in X, \forall y \in Y \)

• *Proposition*. \(\max \{ c^T x : A x \leq b, \ x \geq 0, \ \text{integer} \} \) and \(\min \{ b^T y : A^T y \geq c, \ y \in \mathbb{R}^m_{\geq 0} \} \) form a weak dual pair.

• \(\Rightarrow \) any feasible solution to the dual of current (primal) LPR provides a valid upper bound.

• \(\Rightarrow \) means that don’t even need to solve dual to optimality. Can prune by bound earlier!

Branching Decision

• Most-fractional variable:
 – try to make progress towards integer soln quickly

• User priorities (e.g., “big decisions” first):
 – “the location of a facility is more consequential than the districts it serves” for example

• Strong branching:
 – “look ahead” before making a commitment to a branching decision

• Pseudocost method:
 – *estimate* effect on objective value of LPR of branching (approx form of strong branching, looks at what has happened earlier in problem)
Strong Branching: Example

Which most quickly improves the bound?
Answer: branching on x_2 since it minimizes the max bound

Strong Branching

Let C denote set of integer vars in current subproblem with a fractional assignment

For each $j \in C$:
(a) solve subproblem with $x_j \leq \lceil \bar{x}_j \rceil$ and $x_j \geq \lfloor \bar{x}_j \rfloor$
(b) let \overline{z}_j^D and \overline{z}_j^U denote the value of LP solns

Branch on $j^* = \arg \min_{j \in C} \max[\overline{z}_j^D, \overline{z}_j^U]$

Can also solve subproblems approximately, just using a few dual simplex pivots.
Unboundedness in IPs

(advanced material)

• If an LP relaxation is unbounded:
 – if the integer variables take on integer values, then IP is unbounded. Else, we can branch.

• But, BnB may not terminate on a problem that is infeasible or unbounded.

• Will terminate if feasible, bounded, or if all integer variables bounded.

\[
\begin{align*}
\text{min} & \quad 0 \\
1 & \leq 3x - 3y \leq 2 \\
x, y & \in \mathbb{Z}
\end{align*}
\]

Infeasible, but B&B keeps searching

Formulation Strength
Recall: Firehouse Location

Formulation (P₁):
• If m=2 sites, and n=4 districts:
 • \(x_{11} + x_{21} + x_{31} + x_{41} \leq 4y_1\)
 • \(x_{12} + x_{22} + x_{32} + x_{42} \leq 4y_2\)
 • m constraints

Alternate formulation (P₂):
• \(x_{11} \leq y_1; x_{21} \leq y_1; x_{31} \leq y_1; x_{41} \leq y_1\)
• \(x_{12} \leq y_2; x_{22} \leq y_2; x_{32} \leq y_2; x_{42} \leq y_2\)
• mn constraints

• **Definition.** The LP relaxation (LPR) of an IP replaces all integer variables with continuous variables.

• **Definition.** The polyhedron of an IP is the feasible region of the LPR.
Valid formulations

• Consider (IP) max \{c^T x: x \in S \subseteq \mathbb{Z}^n\}

• **Defn.** Polyhedron \(P \) is a valid formulation for the IP if \(P \cap \mathbb{Z}^n = S \)

Strong Formulations

• **Proposition.** Consider two valid formulations \(P_1 \) and \(P_2 \), with \(P_2 \subseteq P_1 \subseteq \mathbb{R}^n \). Then \(z_{2\text{LP}} \leq z_{1\text{LP}} \).

• **Proof.** Suppose \(z_{2\text{LP}} > z_{1\text{LP}} \). But \(x^* \) that is best in \(P_2 \) is also feasible in \(P_1 \). Contradiction!

• Say that “\(P_2 \) is stronger than \(P_1 \)”
Example

Tight “big M”:
• \(x_{11} + x_{21} + x_{31} + x_{41} \leq 4y_1 \) \(P_1 \)

Loose “big M”:
• \(x_{11} + x_{21} + x_{31} + x_{41} \leq 10y_1 \) \(P_1' \)

• Both are valid formulations.
• But \(P_1' \) has additional fractional solutions, e.g. \(x=(0.5, 0.5, 0.5, 0.5), y=(0.25) \)
• \(\Rightarrow P_1 \) is stronger than \(P_1' \)

Importance of Strong Formulations

Benefit 1:
Improve LP bounding \(\Rightarrow \) more fathoming of open problems by bound. (main advantage).

Benefit 2:
If search is best-bound first, better guidance in regard to node selection.

Benefit 3:
Fewer optimal, non-integral solutions.
Convex Hull

• **Definition.** Given set $X \subseteq \mathbb{Z}^n$, the **convex hull** of $X = \{x_1, \ldots, x_t\}$ is
 \[\text{conv}(X) = \{x: x = \sum_{k=1}^{t} \lambda_k x_k, \sum_{k=1}^{t} \lambda_k = 1, \lambda_k \geq 0 \text{ for all } k\} \]

• **Prop.** $\text{conv}(X)$ is a polyhedron.

• **Prop.** Extreme points of $\text{conv}(X)$ all lie in X.

• **Prop.** Can solve IP via solving LP on $\text{conv}(X)$.

An “Ideal” formulation!

Replace IP $\max \{c^T x: x \in X\}$ with the LP
\[\{\max c^T x: x \in \text{conv}(X)\} \]

• **Problem:** can require an exponential number of inequalities to define $\text{conv}(X)$
 • If $|X| = q$, may need as many as 2^q inequalities.
 • Better be the case, else we’d have P=NP!
Computational Complexity
(Brief!)

• **Decision problems**: Is there a TSP tour cost ≤ 10?
• **P**: class of decision problems that can be solved in polynomial time ("easy")
• **NP**: class of problems for which when answer is YES there is easy (poly time) proof (e.g., TSP)

• A problem is **NP-complete** if it is in **NP** and any problem in **NP** can be "reduced" (in poly time) to the problem; e.g. 0/1 integer programs.

Widely conjectured that P≠NP

Complexity of LP
(advanced material)

• The simplex method is fast in practice, but not worst-case polynomial time.

• First **polynomial-time** LP algorithm was devised in 1979 by Khachian (made headlines!).
• Khachian’s **Ellipsoid method** is an **interior point method**. Does not rely on vertex solutions. Fits an increasingly good ellipsoid approximation. Poly time

• In 1984, Karmarkar announced a poly-time interior-point ,method with solution times 50x better than simplex. Again made headlines!
• LP is in class P, however 0/1 IP is NP-complete.

• If a polynomially-sized description of $\text{conv}(X)$ could be obtained for every IP, we could solve IPs in poly-time via reduction to LPs.

• Eureka! We would prove $P=\text{NP}$.

Alternative Goal

• Q: What else can we do (other than formulate the convex hull) to improve the strength of formulations?

• A: Try to automatically approximate $\text{conv}(X)$ on a given instance, strengthening the formulation.
• **Defn.** A **valid inequality** may remove some fractional solns, but removes no integer solns.

• **Defn.** A **cut** is a valid inequality that **removes** the current fractional solution \(x^* \).

Looking at CPLEX

• IBM’s Ilog CPLEX solver is used by AMPL

• Routinely used to solve real world problems of large economic significance
Some CPLEX features

• Automated Cut Generation
 – At “root” node (Global cuts)
 – At search nodes (Local cuts)
• Automated bound strengthening
 – Tighten right-hand side
• Primal heuristics
 – Look for integer feasible solutions that are close to current fractional solution

Example

```
var X1 integer >= 0;
var X2 integer >= 0;
maximize Obj: 5 * X1 + 8 * X2;
subject to C1: X1 + X2 <= 6;
subject to C2: 5 * X1 + 9 * X2 <= 45;
end;

ampl: model simple.mod;
ampl: option solver cplex;
ampl: solve;
```
Enabling feedback to AMPL

```AMPL
option cplex_options
'timing = 1' # display timing info
'mipdisplay=2' # display MIP information
'mipinterval=1'; # node interval
```

- **timing=1**: show how much CPU time used to solve the problem
- **mipdisplay=2**: show # of open nodes
- **mipinterval=n**: display information every n nodes and whenever it finds an integer solution

Root Relaxation Solution Time

Root relaxation solution time = 0.00 sec. (0.00 ticks)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Bound</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0+</td>
<td>0</td>
<td>0.0000</td>
<td>70.0000</td>
<td>2</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>41.2500</td>
<td>2</td>
<td>0.0000</td>
<td>41.2500</td>
<td>2</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>0</td>
<td>39.0000</td>
<td>41.2500</td>
<td>2</td>
<td>5.77%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>0</td>
<td>40.0000</td>
<td>41.2500</td>
<td>2</td>
<td>3.12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>cutoff</td>
<td>40.0000</td>
<td></td>
<td>2</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elapsed time = 0.01 sec. (0.03 ticks, tree = 0.00 MB)

Root Node Processing (before b&c):

Real time = 0.01 sec. (0.03 ticks)
Parallel b&c, 16 threads:
- Real time = 0.00 sec. (0.00 ticks)
- Sync time (average) = 0.00 sec.
- Wait time (average) = 0.00 sec.

Total (root+branch&cut) = 0.01 sec. (0.03 ticks)

Times (seconds):

- Input = 0.000782
- Solve = 0.018569
- Output = 0.000492

CPLEX 12.6.0.0: optimal integer solution; objective 40
2 MIP simplex iterations
0 branch-and-bound nodes

Node: current node
Nodes left: # of open nodes
Objective: value of current LPR
IInf: # integer infeasible variables
Best Integer: best solution found
Best Bound: current upper bound
ItCnt: total # pivots so far
Gap: relative gap between the best integer solution and best bound
Disabling Presolve

option presolve 0;
option cplex_options
'timing = 1'
'mipdisplay=2'
'mipinterval=1'
'boundstr=0': no bound strengthening
'dependency=0': no dependency checker in presolve
'coeffreduce=0': do not do coefficient reduction
'presolve=0': stop all cut generation
'cutpass = -1': do not scale the problem
'scale = -1': do not scale the problem
'prerelax = 0': do not presolve at the initial LPR
'presolvenode= -1': do not presolve at each node
'presolvenode = -1';

Disabling Primal Heuristics

option cplex_options
'fpheur = -1'
'heurfreq = -1'
'rinsheur = -1';

fpheur: Whether to use the feasibility pump heuristic on MIP problems (find initial feasible):
-1 = no
0 = automatic choice (default)

heurfreq: How often to apply "node heuristics" for MIPS
-1 = no
20 = every twenty nodes

rinsheur: Relaxation INduced neighborhood Search HEURistic for MIP problems:
-1 = none
0 = automatic choice of interval (default)
n (for n > 0) = every n nodes.
Root relaxation solution time = 0.00 sec. (0.00 ticks)

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Bound</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>41.2500</td>
<td>2</td>
<td>41.2500</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>41.2500</td>
<td>2</td>
<td>41.2500</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elapsed time = 0.01 sec. (0.05 ticks, tree = 0.01 MB)

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Bound</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>41.0000</td>
<td>1</td>
<td>41.2500</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>2</td>
<td>integral</td>
<td>0</td>
<td>39.0000</td>
<td>41.2500</td>
<td>5</td>
<td>5.77%</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40.5556</td>
<td>1</td>
<td>39.0000</td>
<td>41.2500</td>
<td>5</td>
<td>5.77%</td>
</tr>
<tr>
<td>*</td>
<td>4</td>
<td>integral</td>
<td>0</td>
<td>40.0000</td>
<td>41.2500</td>
<td>6</td>
<td>3.12%</td>
</tr>
</tbody>
</table>

Root node processing (before b&c):

- Real time = 0.00 sec. (0.01 ticks)
- Parallel b&c, 16 threads:
 - Real time = 0.02 sec. (0.05 ticks)
 - Sync time (average) = 0.00 sec.
 - Wait time (average) = 0.00 sec.

Total (root+branch&cut) = 0.02 sec. (0.05 ticks)

Times (seconds):
- Input = 0.000025
- Solve = 0.001536
- Output = 0.000714
- CPLEX 12.6.0.0: optimal integer solution; objective 40
- 6 MIP simplex iterations
- 5 branch-and-bound nodes

Summary: Branch and Bound

- **Node Selection**
 - DFS together with dual pivots
 - Followed by best-first search (use LP bounds)

- **Branching decision**
 - Most-fractional, **pseudo-cost based**, user priorities, strong branching.

- **Formulation strength**
 - More fathoming by bound, better node selection guidance. Fewer fractional optimal solns

- **Cut generation**
 - Automatically tighten the formulation as search