AM 121: Introduction to Optimization
Models and Methods

Lecture 4: Basic Feasible Solutions, Extreme points

Yiling Chen
Harvard SEAS

Lesson Plan

- Polyhedron, convexity and optimality
- Basis, basic feasible solutions (BFS), optimality

- Optimization ↔ Geometry ↔ Algebra

- Jensen & Bard: 3.1, 3.3
Notation

- Vector will usually mean column vector
- $m \times n$ matrix:

\[
A = (A_1 \ A_2 \ \ldots \ \ A_n) = \begin{pmatrix}
\mathbf{a}_1^\top \\
\ldots \\
\mathbf{a}_m^\top
\end{pmatrix}
\]

A_i is the i-th column, a_j^\top is the j-th row.
- A_B is matrix formed from columns in set B (e.g., $B = \{1, 3\}$).
- $S \setminus T$ is set of elements of S that do not belong to T
- \mathbb{R}^n is set of n-dimensional vectors
- $\mathbf{x} = (x_1, x_2, \ldots, x_n)^\top \in \mathbb{R}^n; \ A\mathbf{x} = \sum_i x_i A_i$
- $\mathbf{x} \geq 0$ and $\mathbf{x} > 0$: every component of \mathbf{x} is nonnegative (respectively, positive)

Recall: LP Standard Forms

- Standard equality form:

\[
\begin{align*}
\text{max} \quad & \mathbf{c}^\top \mathbf{x} \\
\text{s.t.} \quad & A\mathbf{x} = b \\
& \mathbf{x} \geq 0
\end{align*}
\]

- maximization problem
- m equality constraints
- n inequality constraints

- Standard inequality form:

\[
\begin{align*}
\text{max} \quad & \mathbf{c}^\top \mathbf{x} \\
\text{s.t.} \quad & A\mathbf{x} \leq b \\
& \mathbf{x} \geq 0
\end{align*}
\]

- Can transform any LP into standard forms.
Convex Sets

- Given \(y, z \in \mathbb{R}^n, y \neq z \) define **open line segment**
 \((y, z) = \{ \lambda y + (1 - \lambda)z \mid 0 < \lambda < 1 \} \).

- **Definition:** A set \(F \subseteq \mathbb{R}^n \) is **convex** when
 \(y, z \in F, y \neq z \Rightarrow (y, z) \subseteq F \).

Polyhedron

Definition

A **polyhedron** is a set that can be described in the form
\(P = \{ x \in \mathbb{R}^n \mid Ax \leq b \} \).

Fact

The feasible set of any LP can be described as a polyhedron.
Definition

Let $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} \neq \mathbf{0}$, and let b be a scalar. Then,

- $\{x \in \mathbb{R}^n \mid \mathbf{a}^\top x = b\}$ is a set of points that forms a **hyperplane**
- $\{x \in \mathbb{R}^n \mid \mathbf{a}^\top x \leq b\}$ is a set of points that forms a **halfspace**

- **Note:** vector \mathbf{a} is perpendicular to the hyperplane
- If \mathbf{x} and \mathbf{y} are on the same hyperplane, then $\mathbf{a}^\top \mathbf{x} = \mathbf{a}^\top \mathbf{y}$ and $\mathbf{a}^\top (\mathbf{x} - \mathbf{y}) = 0$ and \mathbf{a} is orthogonal to any vector on the hyperplane.
- $\mathbf{x} - \mathbf{y}$ is a vector on the hyperplane
Theorem

A halfspace is convex.

Theorem

The intersection of convex sets is convex.

Theorem

Every polyhedron is an intersection of halfspaces, and convex.

Intuition: Optimality

In two dimensions, convexity \equiv angle inside feasible region at corner is $\leq 180^\circ$.

Let v denote value of optimal solution x^*. Hyperplane $\mathbf{c}^\top \mathbf{x}^* = v$ “separates” all points in the feasible polyhedron from x^*, showing they have less objective value.
Extreme Points

Definition
Let P be a polyhedron. $x \in P$ is an extreme point if we cannot find $y, z \in P$, both different from x, such that $x \in (y, z)$.

\[
x \text{ is an extreme point: if } x = \lambda y + (1-\lambda) z \text{ and } \\
\lambda \in (0,1) \text{ for } y, z \neq x \text{ then either } \\
y \not\in P \text{ or } z \not\in P.
\]

Existence of Extreme Points

Definition
A polyhedron contains a line if there exists a $x \in P$ and a nonzero vector $d \in P$ s.t. $x + \lambda d \in P$ for all scalars λ.

Theorem
A polyhedron P contains an extreme point if and only if it does not contain a line.

e.g., P contains a line, but Q does not (figure from MIT 6.251).
Optimality of Extreme Points

Theorem

Consider $\max \ c^\top x$ over a polyhedron P. Suppose P has at least one extreme point, and there exists an optimal solution. Then there exists an optimal, extreme solution.

Proof.

- $P = \{x \in \mathbb{R}^n | Ax \leq b\}$, x^* optimal with $v = c^\top x^*$.
- Define $Q = \{x \in \mathbb{R}^n | Ax \leq b, c^\top x = v\} \subseteq P$; a polyhedron with an extreme point.
- Let x' be an extreme point of Q. Suppose for contradiction that x' is not extreme in P. Then, $x' = \lambda y + (1 - \lambda)z$, for $y, z \in P$, not equal to x', with $\lambda \in (0, 1)$.
- We have $c^\top x' = \lambda c^\top y + (1 - \lambda)c^\top z = v$, and by optimality of v we have $c^\top y \leq v$ and $c^\top z \leq v$. So, $c^\top y = c^\top z = v$, and $z, y \in Q$. But then x' is not an extreme point in Q. Contradiction.

- How can an LP have an optimal solution but no extreme point?
- How can an LP have an extreme point but no optimal solution?
Review: Basis

- The span of vectors y_1, \ldots, y_K in R^m is the set of vectors z of the form $z = \sum_k d_k \cdot y_k$, where d_k is a scalar.

- Vectors y_1, \ldots, y_K are linearly-independent if and only if the only solution of $\sum_k d_k \cdot y_k = 0$ is $d_k = 0$ for all k. (If linearly dependent, then one can be written as the linear combination of the others.)

- A basis of R^m is a collection of linearly-independent vectors in R^m that span R^m. (Any m linearly-independent vectors will provide a basis.)

Examples

Consider R^2. What about:

- $\{ (1, 0)^T, (0, 1)^T \}$
- $\{ (1, 0)^T, (1, 1)^T \}$
- $\{ (1, 0)^T, (2, 0)^T \}$
Review: Matrix Properties

- Columns of $A = (A_1 \ldots A_n)$ are **linearly independent** if and only if the only solution of $Ax = 0$ is $x = 0$.

 Example:

 \[
 \begin{pmatrix}
 1 & 1 \\
 1 & 0
 \end{pmatrix}
 \quad ?
 \quad \begin{pmatrix}
 0 & 0 \\
 2 & 1
 \end{pmatrix}
 \quad ?
 \]

- Columns of m by n matrix A span R^m if $Ax = b$ has a solution for every $b \in R^m$.

 Example:

 \[
 \begin{pmatrix}
 1 & 0 & 1 & 0 \\
 1 & 2 & 0 & 1
 \end{pmatrix}
 \quad ?
 \quad \begin{pmatrix}
 0 & 0 \\
 2 & 1
 \end{pmatrix}
 \quad ?
 \]

- Rank of matrix A is the size of largest collection of linearly independent columns (the **column rank**)

 - equivalently, the size of largest collection of linearly independent rows (the **row rank**)

 - Fact: column rank = row rank $\leq \min(m, n)$

Review: Invertible Matrices

- m by m matrix A is **invertible** if there is some A' such that $AA' = A'A = I_m$ (the identity matrix, 0s off-diagonal, 1s on-diagonal.)

- Following properties are equivalent for a square matrix:

 - A is invertible

 - columns of A span

 - columns of A are linearly independent

 - for every $b \in R^m$, $Ax = b$ has a unique solution
Basis of a Matrix

- Consider an \(m \times n \) matrix \(A \)
- \(B \) is a basis for \(A \) if \(A_B \) is invertible (the columns of \(A_B \) are linearly independent and span \(\mathbb{R}^m \)). Need \(|B| = m\).
- Example: \(A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \)

 For \(B = \{1, 3\} \), obtain \(A_B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \).

 \(A_B \) is invertible, and so \(\{1, 3\} \) is a basis for \(A \).
- Extension rule: If columns of \(A \) span, and columns of \(A_C \) are linearly independent for \(|C| < m\), can extend \(C \) to form a basis \(B \) for \(A \).

Basic Solutions

Definition

\(x \) is a basic solution to \(Ax = b \) if the vectors of \(A \) with \(x_i \neq 0 \) are linearly independent.

- For basis \(B \), let \(B' \) denote \(\{1, \ldots, n\} \setminus B \). Call variables \(x_B \) basic and variables \(x_{B'} \) nonbasic.

 Example: for \(B = \{1, 3\} \), \(x_B = (x_1, x_3) \), \(x_{B'} = (x_2, x_4) \).

Definition

The basic solution corresponding to basis \(B \) is obtained by setting \(x_{B'} = 0 \) and solving for \(x_B \).

- \(A_Bx_B + A_{B'}x_{B'} = A_Bx_B + 0 = b \), and so \(x_B = A_{B}^{-1}b \). Unique solution (\(A_B \) invertible). Some \(x_B \) values may be 0!

Fact

\(x \) is a basic solution if and only if there is a basis \(B \) s.t. non-basic variables \(x_{B'} = 0 \). (via extension rule).
Example: Basic Solutions

Standard equality form (also canonical here):

\[
\begin{align*}
\text{max} & \quad x_1 + x_2 \\
\text{s.t.} & \quad x_1 \leq 2 \\
& \quad x_1 + 2x_2 \leq 4 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad x_1 + x_2 \\
\text{s.t.} & \quad x_1 + x_3 = 2 \\
& \quad x_1 + 2x_2 + x_4 = 4 \\
& \quad x_1, x_2, x_3, x_4 \geq 0
\end{align*}
\]

- Five bases: \(\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{3, 4\} \).
- Corresponding basic solutions: \((x_1, x_2, x_3, x_4)^\top = (2, 1, 0, 0)^\top, (4, 0, -2, 0)^\top, (2, 0, 0, 2)^\top, (0, 2, 2, 0)^\top, (0, 0, 2, 4)^\top\)
- All feasible?

Basic Feasible Solution (BFS)

- Constraints \(Ax = b \), and \(x \geq 0 \).

Definition

A **basic feasible solution** is basic and feasible.

- In the example, there are 4 BFS, each of which corresponds to a feasible solution \((x_1, x_2)^\top = (2, 1)^\top, (2, 0)^\top, (0, 2)^\top, (0, 0)^\top\) of the original LP. The other basic solution is infeasible, not \(x \geq 0 \).
BFS occur at the “corners” of the feasible region
Geometrically, optimization finds a “corner” solution
Corners correspond exactly to BFS

Optimization ↔ geometry ↔ algebra

Let’s prove the correspondence between extreme points and BFS

Main LP Assumptions

- \(\max c^\top x \) s.t. \(Ax = b, x \geq 0 \)
- \(A \) has full row rank:
 - wlog because if not then have redundancy because one row can be written as linear combination of other rows
- Less rows than columns \((m < n)\)
 - wlog because this makes it an optimization problem!
 - \(n \) variables, \(m \) equations. \((n - m)\) is the “degree of freedom”
- **Columns of \(A \) span \(R^m \)**
 - meaning \(Ax = b \) has a solution for every \(b \)
 - follows from full row rank, and thus column rank = \(m \)
BFS and Extreme Points

Theorem

Consider \(P = \{ \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0 \} \), for \(\mathbf{A} \) with columns that span. Then extreme points of \(P \) are exactly the BFS of \(P \).

Proof.

\((\Leftarrow)\) A BFS is an extreme point:
- Suppose \(\mathbf{x} \) is a BFS corresponding to basis \(B \).
- For contradiction, assume \(\mathbf{x} \) is not an extreme point, i.e. \(\mathbf{x} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{z} \) for \(\mathbf{z}, \mathbf{y} \in P \), \(\mathbf{y} \neq \mathbf{z} \) and some \(\lambda \in (0,1) \).
- For all \(i \notin B \), we have \(x_i = 0 \), and because \(\mathbf{y}, \mathbf{z} \geq 0 \), we must have \(y_i = z_i = 0 \) for all \(i \notin B \).
- Conclude that \(\mathbf{y} \) and \(\mathbf{z} \) are the same BFS as \(\mathbf{x} \). Why? They have the same basic and non-basic variables.
- Contradiction!

\((\Rightarrow)\) An extreme point is a BFS:
- Let \(\mathbf{x} \) be an extreme point. Assume for contradiction it is not basic. Let \(C = \{ i : x_i > 0 \} \), with \(|C| = k \).
- \(\mathbf{A}_C \) must not have linearly independent columns:
 - if \(k \leq m \) and cols linearly ind., then \(\mathbf{x} \) would be basic.
 - if \(k > m \), would imply column rank larger than \(m \)!
- Let \(\mathbf{d}' \) denote a non-zero vector in \(\mathbb{R}^k \) such that \(\mathbf{A}_C \mathbf{d}' = \mathbf{0} \). Define \(\mathbf{d} \in \mathbb{R}^n \) with \(d_i = d_i' \) for \(i \in C \), and \(d_i = 0 \) otherwise.
- For small \(\epsilon > 0 \), points \(\mathbf{x} \pm \epsilon \mathbf{d} \) are distinct (since \(\mathbf{d} \neq \mathbf{0} \)) and both in \(P \) (since \(\mathbf{A}_C \mathbf{d}' = \mathbf{0} \) and thus \(\mathbf{A}\mathbf{d} = \mathbf{0} \), and with \(\mathbf{x} \pm \epsilon \mathbf{d} \geq \mathbf{0} \) for small \(\epsilon \) since \(d_i = 0 \) whenever \(x_i = 0 \)).
- A contradiction with \(\mathbf{x} \) being an extreme point.

\(\square\)
Summary

- If there’s an extreme point, and an optimal solution, then there’s an optimal solution at an extreme point.
- All non-zero variables in a basic solution \mathbf{x} correspond to linearly independent columns of \mathbf{A}. There is also a basis B ($|B| = m$, A_B rank m) s.t. non-basic $\mathbf{x}_{B^c} = \mathbf{0}$.
- Extreme points of the polyhedron are exactly the basic feasible solutions (BFS) (basic and $\mathbf{x} \geq \mathbf{0}$)
- Suggests we can solve LPs by searching through BFS. *But can we do this efficiently?*