Lesson Plan

- Stochastic process
- Markov Chains
 - n-step probabilities
 - Communicating states, irreducibility
 - Recurrent states, transient states
 - Ergodic states
- Steady-state probabilities
- Applications
 - Google PageRank
 - NCAA prediction

- Jensen & Bard: 11.3, 12, 13
Weather

- Probability 0.8 dry tomorrow if dry today, 0.6 dry tomorrow if rains today. Probabilities do not change if the weather before today is taken into account.
- \(S_t = \begin{cases} 0 & \text{if day } t \text{ is dry} \\ 1 & \text{if day } t \text{ is rainy} \end{cases} \)
- \(P(S_{t+1} = 0 | S_t = 0) = 0.8 \)
- \(P(S_{t+1} = 0 | S_t = 1) = 0.6 \)

![State Transition Diagram]

Stochastic processes

- A stochastic process is a sequence of random variables \(\{S_t\} \), in each period \(t \in \{0, 1, 2, \ldots \} \)
- There is a set of possible states
 \[
 S = \{0, \ldots, m - 1\}
 \]
- State \(S_t \in S \)
- In general, the transition probability is
 \[
 P(S_{t+1} = j | S_0 = i_0, S_1 = i_1, \ldots, S_t = i) \]
Markov Chain

- A stochastic process has the **Markovian property** if
 \[
P(S_{t+1} = j|S_0 = i_0, S_i = i_1, \ldots, S_t = i) = P(S_{t+1} = j|S_t = i)
 \]

- Transition probabilities are **stationary** if
 \[
P(S_{t+1} = j|S_t = i) = p_{ij}, \quad \forall \ t, i, j
 \]

- Markovian + stationary == Markov chain

Weather

- Probability 0.8 dry tomorrow if dry today, 0.6 if rains today. Probabilities do not change if weather before today is taken into account.
- \(S_t = \begin{cases}
 0 & \text{if day } t \text{ is dry} \\
 1 & \text{if day } t \text{ is rainy}
\end{cases} \)
- \(P(S_{t+1} = 0|S_t = 0) = 0.8 \)
- \(P(S_{t+1} = 0|S_t = 1) = 0.6 \)

Transition matrix

\[
P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix}
\]

State Transition Diagram
Transition Matrix

\[
P = \begin{pmatrix}
p_{00} & p_{01} & \cdots & p_{0, m-1} \\
p_{10} & p_{11} & \cdots & p_{1, m-1} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m-1, 0} & p_{m-1, 1} & \cdots & p_{m-1, m-1}
\end{pmatrix}
\]

All rows sum to 1.
Every entry between 0 and 1.

- To define a Markov chain:
 - Describe states \(S = \{0, \ldots, m-1\} \)
 - Define the transition matrix \(P \)

Example: IRS audit

- Often have to increase the state space to achieve the Markovian property
- E.g., if the probability of an IRS tax audit depends on the last two audits then we can introduce four states:

\[
S = \begin{cases}
0 & : \text{if last two audits were “no no”} \\
1 & : \text{if last two audits were “yes no”} \\
2 & : \text{if last two audits were “no yes”} \\
3 & : \text{if last two audits were “yes yes”}
\end{cases}
\]
n-step Transition Probability

- **n-step transition probability** $p^{(n)}_{ij}$ is the **conditional probability** of state j after n steps from state i

$$P(S_{t+n} = j | S_t = i) = p^{(n)}_{ij}$$

- $p^{(n)}_{ij} = \sum_{k=0}^{m-1} p^{(d)}_{ik} p^{(n-d)}_{kj}$
 - i.e., in going from i to j in n steps, must be in some state k after d steps and j in $n - d$ steps; sum over all possible intermediate states

- For example (given two states):

 $$p^{(2)}_{01} = p_{00}p_{01} + p_{01}p_{11}$$

 $$p^{(2)}_{11} = p_{10}p_{01} + p_{11}p_{11}$$

n-step Transition Probability

- **n-step transition probability** $p^{(n)}_{ij}$ is the **conditional probability** of state j after n steps from state i

$$P(S_{t+n} = j | S_t = i) = p^{(n)}_{ij}$$

- We have:

 $$P^{(2)} = PP = P^2$$

 $$P^{(3)} = PP^{(2)} = PP^2 = P^3$$

 $$P^{(4)} = PP^{(3)} = PP^3 = P^4$$
Example: Weather

\[
P^{(2)} = PP = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix} \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.76 & 0.24 \\ 0.72 & 0.28 \end{pmatrix}
\]

\[
P^{(3)} = PP^{(2)} = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix} \begin{pmatrix} 0.76 & 0.24 \\ 0.72 & 0.28 \end{pmatrix} = \begin{pmatrix} 0.752 & 0.248 \\ 0.744 & 0.256 \end{pmatrix}
\]

\[
P^{(4)} = PP^{(3)} = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix} \begin{pmatrix} 0.752 & 0.248 \\ 0.744 & 0.256 \end{pmatrix} = \begin{pmatrix} 0.75 & 0.25 \\ 0.749 & 0.251 \end{pmatrix}
\]

\[
P^{(5)} = PP^{(4)} = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix} \begin{pmatrix} 0.75 & 0.25 \\ 0.749 & 0.251 \end{pmatrix} = \begin{pmatrix} 0.75 & 0.25 \\ 0.75 & 0.25 \end{pmatrix}
\]

- After 5 steps, each row has identical entries: the prob of it being dry or rainy is independent of the weather 5 days ago.
- Will see later that 0.75, 0.25 are steady-state probabilities.

Unconditional \(n \)-step State Probability

- The unconditional \(n \)-step probability \(P(S_n = j) \) is the probability that will be in state \(j \) after \(n \) steps.
- For this, need probability distribution on initial state, i.e. \(P(S_0 = i) \) for \(i \in S \). Given this,

\[
P(S_n = j) = P(S_0 = 0)p_{0j}^{(n)} + \cdots + P(S_0 = m - 1)p_{m-1,j}^{(n)}
\]

- \textbf{Weather example:} if dry on day one \((S_0 = 0)\) with probability 0.5, then probability dry after two days is

\[
P(S_2 = 0) = 0.5p_{00}^{(2)} + 0.5p_{10}^{(2)} = 0.5 \times 0.76 + 0.5 \times 0.72 = 0.74
\]
Classes of States

absence of edge = prob zero. Existence of edge = prob > 0.

“communicate” = can transition from \(i\) to \(j\) and from \(j\) to \(n\) (after some number of steps)
One class in which all states communicate (irreducible):

\[
\begin{align*}
0 & \rightarrow 1 & \rightarrow 2 & \rightarrow 3
\end{align*}
\]

Four distinct classes, no states communicate (except with themselves):

\[
\begin{align*}
0 & \rightarrow 1 & \rightarrow 2 & \rightarrow 3
\end{align*}
\]

More Examples

\[
\begin{align*}
0 & \rightarrow 1 & \rightarrow 2 & \rightarrow 3 & \rightarrow 4
\end{align*}
\]

Class 1 \hspace{2cm} Class 2 \hspace{2cm} Class 3

\[
\begin{align*}
0 & \rightarrow 3 & \rightarrow 6
\end{align*}
\]

Class 1 \hspace{2cm} Class 2
Classes of States; Irreducible

- State j is accessible from state i if $p_{ij}^{(n)} > 0$ for some $n \geq 0$
- States i and j communicate if state j is accessible from i and state i from state j
 - any state communicates with itself
 - transitive (if i communicates with j, and j with k, then i communicates with k)
- A class is a set of states that communicate with each other and is maximal (cannot add another state to the set)
- A Markov chain is irreducible if it has only one class.

Recurrent and Transient States

- A state is recurrent if the process will return to the state again with probability $= 1$. A state is transient otherwise.
- Proposition. Recurrence is a class property: all states in a class are either recurrent or transient.
- Proposition. Not all states can be transient.
 \[\Rightarrow \] all states in an irreducible Markov chain are recurrent.
- A state is absorbing if the process will never leave the state.
Examples

Class 1 Class 2 Class 3

Note: recurrent classes have no leaving arcs
Periodicity

- The period of state \(i \), written \(d(i) \), is an integer \(d(i) \geq 1 \) such that the chain can return to \(i \) only at multiples of the period \(d(i) \) and \(d(i) \) is the largest such integer.
- **Proposition.** Periodicity is a class property: all states in a class have the same period.
- Example:
Aperiodic states
- State i is aperiodic if the period is $d(i) = 1$ and periodic otherwise.

- It is sufficient for $p_{ii} > 0$ for state i to be aperiodic.
- A state to which the chain can never return is defined to be aperiodic.
- Remember: periodicity or aperiodicity is a class property

irreducible (necessarily recurrent)
all states are aperiodic (why?)

Another Example
Another Example

Ergodicity

- An **ergodic state** is a state that is recurrent and aperiodic.
- An irreducible (thus, recurrent) Markov chain is **ergodic** if it is aperiodic.

all states are aperiodic and recurrent; an ergodic chain
Example (A Non Ergodic Chain)

transient class
periodic (period = 3)
(note, can be transient
and periodic!)

recurrent class
aperiodic (state 4 is ergodic)

Steady-State Probabilities

- For any ergodic Markov chain, \(\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j > 0 \) exists, and is independent of \(i \).

- The steady-state probability \(\pi_j \) for state \(j \) is the probability the process is in state \(j \) after a large number of transitions.

- Computed via the steady-state equations ("balance equations"):
 \[
 \pi_j = \sum_{i=0}^{m-1} \pi_i \cdot p_{ij} \quad \text{for } j = 0, \ldots, m - 1 \tag{1}
 \]
 \[
 \sum_{j=0}^{m-1} \pi_j = 1 \tag{2}
 \]
Example: Weather

- Ergodic: Can solve for steady-state probabilities
 - $\pi_0 = \pi_0 p_{00} + \pi_1 p_{10} = 0.8\pi_0 + 0.6\pi_1$
 - $\pi_1 = \pi_0 p_{01} + \pi_1 p_{11} = 0.2\pi_0 + 0.4\pi_1$
 - $1 = \pi_0 + \pi_1$
- Get: $\pi_0 = 0.75$, $\pi_1 = 0.25$
- Steady state probability dry 0.75, steady state probability rain 0.25

Computing the Steady State Probabilities

- $\pi_j = \sum_{i=0}^{m-1} \pi_i \cdot p_{ij}$ for $j = 0, \ldots, m - 1$
- $\sum_{j=0}^{m-1} \pi_j = 1$
- $m + 1$ equations, m unknowns. One of first m equations is redundant.
- We need the $\sum_j \pi_j = 1$ equation because otherwise $\pi_j = 0$ solves.
- Can solve via Gaussian elimination, matrix inversion, etc.
Application: Google PageRank

- Link from page 1 to page 2 indicates that 1 “trusts” 2.
- The quality of a page is related to its in-degree as well as the quality of the incoming pages.
- **Random surfer model**: with prob $1 - \alpha$ follow an out-edge at random (e.g., $1/2$), w. prob α do a random jump.
- Defines a Markov chain. The **PageRank** of page i is the steady state probability of visiting page i:
 - the fraction of time the surfer will spend at the page

(Brin and Page’98)

Example: PageRank

![Diagram of hyperlink structure]

- $\mathbf{P} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$
- $\pi = (5/18, 4/9, 5/18)$, the PageRank (node 2 is the most trusted!)

“teleporting links”

include jump prob $1/6$ for missing edges in this example
FBI estimates that more than $3 billion wagered on NCAA basketball each year. Betting pools typically set-up to predict the winner of each game.

Season is mid-Nov to mid-March, followed by a 64-team tournament (31 champions from the conferences, plus the remaining best teams).

Seeded into 4 regions. Within each region play single-elimination tournament on neutral court.

The winner of each region goes to the Final Four; play a single-elimination tournament on neutral court.

http://sports.yahoo.com/ncaab/bracket
Many Sources of Information

- AP poll of sportswriters
- ESPN/USA Today poll of coaches
- Sagarin ratings (USA Today)
- Massey ratings
- Las Vegas odds

Can Markov chains be used to do better than all of these?

The NCAA Data

- 330 Division I teams
- Members i and j in a conference play each other twice a year, once on i’s home court and once on j’s home court
- Data is the location, winner, and scores.

- Idea: Build a Markov chain to represent the random walk of an expert who transitions according to the team she thinks is best (“follows the wins”).
Example: Three NCAA Teams

- **Random surfer model:** Current state i is the team that the expert believes is best. At each step, pick a competitor j at random, and toss a weighted coin to determine whether j wins (transition to j) or not (stay at state i.)
- Steady-state probabilities give estimated quality of each team

Methodology: NCAA via Markov Chains

1. Each game is ordered pair $(i,j) \in G$, (set of games G) visiting team first.
2. z_{ij} is the win margin of home team j (> 0 if wins)
3. Use a logistic regression to estimate $r(z_{ij})$: the prob home team j would beat i at neutral site
4. Uses $r(z_{ij})$ values to compute transition probabilities p_{ij}
5. From this, compute steady-state probabilities of random walk; higher probability of visiting a team = better team.
Defining the Transition Probabilities

- p_{ij}: transition probability from i to j:

$$p_{ij} \propto \left(\sum_{j: (i,j) \in G} r(z_{ij}) + \sum_{j: (j,i) \in G} (1 - r(z_{ji})) \right)$$

- Define $p_{ii} = 1 - \sum_{j \neq i} p_{ij}$

- Use four years of NCAA data (1999-2000 to 2002-2003 seasons)
S_x: Given that team 1 margin over team 2 is x points on 1’s home court, what is the prob that 1 beats 2 on 2’s home court?

![Figure 3. Observed values and logistic regression estimates for S_H^i.](image)

Estimate home-court advantage h as $h := x/2$, with $x \approx 22$, so that $S_x = 0.5$. Given this, estimate $r(z) := S_{z+h}$.

![Obs. prob. home team j wins (i, j) based on $\pi_j - \pi_i$.](image)

![Figure 5. Observed win probability by steady state difference $\times 10^{-4}$.](image)
Head-to-head prediction results (LRMC vs. others) in games where predictions disagree.

Percentage of correct predictions in each round, 2000-06. LRMC is highest in 5 of the 6 rounds, with large advantages in rounds 4-6.
A Markov chain is Markovian and stationary.

A class of states communicate with each other; a chain is irreducible if one class

Class properties:
 ▶ Recurrent (return w.p. 1) vs transient
 ▶ Periodic (only return after multiples of $d > 1$) vs aperiodic

A state is ergodic if it is recurrent and aperiodic. An irreducible Markov chain is ergodic if it is aperiodic.

Steady-state probabilities are well-defined in an ergodic Markov chain.