AM 121: Intro to Optimization Models and Methods Fall 2018

Lecture 3: Applications, Examples, Exercises.

Yiling Chen SEAS

Lecture 3: Lesson plan

- The Post Office Problem
- The SailCo Problem
- The SAVE-IT Company
- A Simple AMPL Example
 (AMPL: A Modeling Language for Mathematical Programming)
- From problem to LP (+ a little AMPL)

Post Office Problem

Union rules state that each full-time employee must work 5 consecutive days and then receive 2 days off.

Formulate an LP to minimize number of full-time employees who must be hired.

(Assume solution will be integral)

Day	Number of full-time
	employees required
1=Monday	17
2=Tuesday	13
3=Wednesday	15
4=Thursday	19
5=Friday	14
6=Saturday	16
7=Sunday	11

$$\min z = \sum_{i} x_{i}$$
s.t.
$$\sum_{i} x_{i} - x_{2} - x_{3} \ge 17$$

$$\sum_{i} x_{i} - x_{3} - x_{4} \ge 13$$

$$\sum_{i} x_{i} - x_{4} - x_{5} \ge 15$$

$$\sum_{i} x_{i} - x_{5} - x_{6} \ge 19$$

$$\sum_{i} x_{i} - x_{6} - x_{7} \ge 14$$

$$\sum_{i} x_{i} - x_{7} - x_{1} \ge 16$$

$$\sum_{i} x_{i} - x_{1} - x_{2} \ge 11$$

$$x_{i} > 0$$

x_i: number of people with shift start on day i

Note: will need solution to be integral!

Variation 1: Forced overtime

- Post office can ask employees to work a 6th day each week (i.e. work for 6 consecutive days)
- Pay \$500/wk, \$130 for the overtime day.
- Formulate an LP to minimize weekly labor costs
- (Assume solution will be integral)

Day	Number of full-time
	employees required
1=Monday	17
2=Tuesday	13
3=Wednesday	15
4=Thursday	19
5=Friday	14
6=Saturday	16
7=Sunday	11

$$\min z = 500 \sum_{i} x_{i} + 130 \sum_{i} o_{i}$$
s.t.
$$\sum_{i} x_{i} - x_{2} - x_{3} + o_{3} \ge 17$$

$$\sum_{i} x_{i} - x_{3} - x_{4} + o_{4} \ge 13$$

$$\sum_{i} x_{i} - x_{4} - x_{5} + o_{5} \ge 15$$

$$\sum_{i} x_{i} - x_{5} - x_{6} + o_{6} \ge 19$$

$$\sum_{i} x_{i} - x_{5} - x_{6} + o_{7} \ge 14$$

$$\sum_{i} x_{i} - x_{7} - x_{1} + o_{7} \ge 16$$

$$\sum_{i} x_{i} - x_{7} - x_{1} + o_{7} \ge 11$$

x i: number of people with shift start on day i

o_i: number of people who work one day overtime who start on day i

 $o_i \leq x_i, \quad \forall i$ Note: will need solution to be integral!

 $x_i, o_i \ge 0, \quad \forall i$

Variation 2: Maximizing Weekends!

 Post office has 25 fulltime employees.
 Cannot hire or fire.

Day	Number of full-time
	employees required
1=Monday	17
2=Tuesday	13
3=Wednesday	15
4=Thursday	19
5=Friday	14
6=Saturday	16
7=Sunday	11

- Formulate an LP to schedule employees to maximize the number of weekend days off
- (Assume solution will be integral)

$$\max z = x_7 + 2x_1 + x_2$$
s.t.
$$\sum_{i} x_i - x_2 - x_3 \ge 17$$

$$\sum_{i} x_i - x_3 - x_4 \ge 13$$

$$\sum_{i} x_i - x_4 - x_5 \ge 15$$

$$\sum_{i} x_i - x_5 - x_6 \ge 19$$

$$\sum_{i} x_i - x_6 - x_7 \ge 14$$

$$\sum_{i} x_i - x_7 - x_1 \ge 16$$

$$\sum_{i} x_i - x_1 - x_2 \ge 11$$

x_i : number of people who start shift on day i

Note: will need solution to be integral! $\sum_i x_i = 25$

$$x_i \ge 0$$

Variation 3:Part-time Employees

- Can hire part-time employees
- Full-time: 8 hours a day, 5 consecutive days (2 days off). Cost \$15/hour.
- Part-time: 4 hours a day, 5 consecutive days (2 days off). Cost \$10/hour.
- Part-time limited by union to fill 25% of weekly labor (in terms of working hours).
- Formulate an LP to minimize weekly labor costs. (Assume solution will be integral)

Day	Number of hours required
1=Monday	8*17=136 hrs
2=Tuesday	8*13=104 hrs
3=Wednesday	8*15=120 hrs
4=Thursday	8*19=152 hrs
5=Friday	8*14=112 hrs
6=Saturday	8*16=128 hrs
7=Sunday	8*11=88 hrs

$$\min z = 120 \sum_{i} x_{i} + 40 \sum_{i} p_{i}$$
 s.t.
$$8(\sum_{i} x_{i} - x_{2} - x_{3}) + 4(\sum_{i} p_{i} - p_{2} - p_{3}) \geq 136$$

$$8(\sum_{i} x_{i} - x_{3} - x_{4}) + 4(\sum_{i} p_{i} - p_{3} - p_{4}) \geq 104$$

$$8(\sum_{i} x_{i} - x_{4} - x_{5}) + 4(\sum_{i} p_{i} - p_{4} - p_{5}) \geq 120$$

$$\sum_{i} \text{ in number full time who start shift on day i}$$

$$8(\sum_{i} x_{i} - x_{5} - x_{6}) + 4(\sum_{i} p_{i} - p_{5} - p_{6}) \geq 152$$

$$\sum_{i} \text{ in number partitime who start shift on day i}$$

$$8(\sum_{i} x_{i} - x_{6} - x_{7}) + 4(\sum_{i} p_{i} - p_{6} - p_{7}) \geq 112$$

$$8(\sum_{i} x_{i} - x_{7} - x_{1}) + 4(\sum_{i} p_{i} - p_{7} - p_{1}) \geq 128$$

$$8(\sum_{i} x_{i} - x_{1} - x_{2}) + 4(\sum_{i} p_{i} - p_{1} - p_{2}) \geq 88$$
 Note: will need solution to be integral!
$$4\sum_{i} p_{i} \leq 0.25(4\sum_{i} p_{i} + 8\sum_{i} x_{i})$$

$$x_{i}, p_{i} \geq 0$$

The SailCo Problem

SailCo must determine how many sailboats to produce in each quarter in order to meet demand. Boats can be used in same quarter produced, and held-over to future quarter.

Formulate an LP to determine a production schedule for Q1-Q4 to min total production and inventory costs. (Assume there is no demand after Q4.)

	Q1	Q2	Q3	Q4
Forecast demand	40	60	75	25

Production cost

\$400/boat, first 40 boats in a quarter

\$450/boat for additional boats

Inventory cost

\$20/boat/quarter for boats on hand at end of a quarter (after production has occurred and demand satisfied)

Initial inventory: 10 sailboats at start of Q1

$$\min z = 400 \sum_{t} x_{t} + 450 \sum_{t} y_{t} + 20 \sum_{t} h_{t}$$
s.t. $x_{t} \leq 40$, $\forall t$
 $h_{1} = 10 + x_{1} + y_{1} - 40$
 $h_{2} = h_{1} + x_{2} + y_{2} - 60$
 $h_{3} = h_{2} + x_{3} + y_{3} - 75$
 $h_{4} = h_{3} + x_{4} + y_{4} - 25$
 $h_{t}, y_{t}, x_{t} \geq 0$

h_t: represents # boats on hand at end of quarter

x_t: number of boats made up to 40

y_t: number of boats made above 40

Variation 1: A Rolling Horizon

- Suppose make 40 in Q1, and <u>actual demand</u> is 35.
- Start Q2 with 10+40-35=15 boats on hand.
- New planning period is Q2-Q5.
- Currently the optimal solution to the LP will not try to keep boats on hand at end of Q5.
- Modify the formulation to work for Q2-Q5, and ensure that we end the Q5 "planning horizon" with 10 boats in inventory.
- Forecast for Q2-Q5:

	Q1	Q2	Q3	Q4	Q5
forecast demand	40	60	75	25	36
actual demand	35				

Formulate an LP for Q2-Q5 to determine a production schedule to minimize sum of costs and meet new constraint.

Formulation for Q2-Q5:

$$\min z = 400 \sum_{t} x_{t} + 450 \sum_{t} y_{t} + 20 \sum_{t} h_{t}$$
s.t. $x_{t} \leq 40$, $\forall t$
 $h_{2} = 15 + x_{2} + y_{2} - 60$
 $h_{3} = h_{2} + x_{3} + y_{3} - 75$
 $h_{4} = h_{3} + x_{4} + y_{4} - 25$
 $h_{5} = h_{4} + x_{5} + y_{5} - 36$
 $h_{5} \geq 10$
 $h_{t}, y_{t}, x_{t} \geq 0$

h_t: represents # boats on hand at end of quarter

x_t: number of boats made up to 40

y_t: number of boats made above 40

decision variables for periods 2, ..., 5

Variation 2: Production Smoothing

- · Make production "smooth" across periods:
 - an increase in production costs \$400/boat (training)
 - a decrease in production costs \$500/boat (severance pay, loss in morale)
- Assume 50 boats made during the Q preceding Q1, initial inventory of 10.
- Need at least 10 boats on hand at end of planning horizon

	Q1	Q2	Q3	Q4
Forecast demand	40	60	75	25

 Formulate an LP for Q1-Q4 to determine a production schedule to minimize sum of production and inventory costs.

$$\begin{aligned} \min z &= 400 \sum_t x_t + 450 \sum_t y_t + 20 \sum_t h_t + 400 \sum_t c_t^+ + 500 \sum_t c_t^- \\ \text{s.t.} \quad x_t &\leq 40, \quad \forall t \\ h_1 &= 10 + x_1 + y_1 - 40 \\ h_2 &= h_1 + x_2 + y_2 - 60 \\ h_3 &= h_2 + x_3 + y_3 - 75 \\ h_4 &= h_3 + x_4 + y_4 - 25 \\ h_4 &\geq 10 \\ x_1 + y_1 - 50 &= c_1^+ - c_1^- \\ x_2 + y_2 - (x_1 + y_1) &= c_2^+ - c_2^- \\ x_3 + y_3 - (x_2 + y_2) &= c_3^+ - c_3^- \\ x_4 + y_4 - (x_3 + y_3) &= c_4^+ - c_4^- \\ h_t, y_t, x_t, c_t^+, c_t^- &\geq 0 \end{aligned}$$
 Solution: x=(40,40,40,40); y=(15,15,15,15)

h₁: # boats on hand at end of quarter

x_t, y_t: number of boats made up to (above) 40

c_t+: #boat increase from last period c_t-: #boat decrease from last period

- Why will the optimal solution not have both $c_t^+>0$ and $c_t^->0$?
- Suppose production 60 in period 1 and 70 in period 2. What assignments to c_2^+ and c_2^- are *feasible*?

$$70 - 60 = c_2^+ - c_2^-$$
$$c_2^+, c_2^- \ge 0$$

What assignments are optimal?

min ... +
$$400c_2^+ + 500c_2^- + \dots$$

Variation 3: Allowing demands to be backlogged

- Suppose demands can be met in future periods.
- Penalty \$100/boat per guarter demand is unmet.
- · Must meet all demand by end of Q4.
- Build from variation 2 (still face smoothing costs with 50 in previous period and 10 on hand at start of Q1; still want 10 on hand at end of Q4.)

	Q1	Q2	Q3	Q4
Forecast demand	40	60	75	25

Formulate an LP to determine a production schedule to minimize the sum of the production and inventory costs.

$$\begin{aligned} \min z &= 400 \sum_t x_t + 450 \sum_t y_t + 20 \sum_t h_t^+ + 400 \sum_t c_t^+ + 500 \sum_t c_t^- \\ &+ 100 \sum_t h_t^- \\ \text{s.t.} \quad x_t &\leq 40, \quad \forall t \\ h_1^+ - h_1^- &= 10 + x_1 + y_1 - 40 \\ h_2^+ - h_2^- &= h_1^+ - h_1^- + x_2 + y_2 - 60 \\ h_3^+ - h_3^- &= h_2^+ - h_2^- + x_3 + y_3 - 75 \\ h_4^+ - h_4^- &= h_3^+ - h_3^- + x_4 + y_4 - 25 \\ x_1 + y_1 - 50 &= c_1^+ - c_1^- \\ x_2 + y_2 - (x_1 + y_1) &= c_2^+ - c_2^- \\ x_3 + y_3 - (x_2 + y_2) &= c_3^+ - c_3^- \\ x_4 + y_4 - (x_3 + y_3) &= c_4^+ - c_4^- \\ h_4^+ &\geq 10 \\ h_4^- &\leq 0 \end{aligned}$$

$$h_t^+, h_t^-, y_t, x_t, c_t^+, c_t^- \geq 0$$

$$h_t^+ : \text{\#boats on hand at end Q} \\ H_t^- : \text{\#boats backlogged at end Q}$$

The SAVE-IT Company

- Operates a recycling center. Collects four types materials, treats, and amalgamates to make an insulation product of three different grades.
- Formulate an LP to determine the amount of each grade and the mix of materials for each grade, maximizing profit (sales – cost)

Have grant of \$30,000/wk for treatment cost (can't treat more than this)

At least half of each type of material must be treated.

Material	Availability (lbs /wk)	Treatment cost (\$/lb)
1	3000	3
2	2000	6
3	4000	4
4	1000	5

Grade	Spec	Amalg. cost (\$/lb)	Sales price (\$/lb)
A	1 <= 30% 2 >= 40 % 3 <= 50% 4 =20%	3	8.5
В	1 <= 50% 2 >= 10% 3: any 4 = 10%	2.5	7
С	1 <= 70% 2,3,4: any	2	5.5

$$\max 5.5 \sum_{j} x_{Aj} + 4.5 \sum_{j} x_{Bj} + 3.5 \sum_{j} x_{Cj}$$
s.t. $x_{A1} \le 0.3 \sum_{j} x_{Aj}$

$$x_{A2} \ge 0.4 \sum_{j} x_{Aj}$$

$$x_{A3} \le 0.5 \sum_{j} x_{Aj}$$

$$x_{A4} = 0.2 \sum_{j} x_{Aj}$$

$$x_{B1} \le 0.5 \sum_{j} x_{Bj}$$

$$x_{B2} \ge 0.1 \sum_{j} x_{Bj}$$

$$x_{B2} \ge 0.1 \sum_{j} x_{Bj}$$

$$x_{C1} \le 0.7 \sum_{j} x_{Cj}$$

$$1500 \le x_{A1} + x_{B1} + x_{C1} \le 3000$$

$$1000 \le x_{A2} + x_{B2} + x_{C2} \le 2000$$

$$2000 \le x_{A3} + x_{B3} + x_{C3} \le 4000$$

$$500 \le x_{A4} + x_{B4} + x_{C4} \le 1000$$

$$3(x_{A1} + x_{B1} + x_{C1}) + 6(x_{A2} + x_{B2} + x_{C2})$$

$$+4(x_{A3} + x_{B3} + x_{C3}) + 5(x_{A4} + x_{B4} + x_{C4}) \le 30000$$

$$(*)$$

Variation 1: Pay for Treatment

- SAVE-IT recognizes that it might be able to to make more profits and improve the environment.
- Gets matching funds: provide a 80% rebate on treatment cost above \$30,000 per week.
- Formulate an LP that (a) uses all of \$30,000, (b) treats at least half of each type of material, (c) may treat more material if this is profitable.

• Introduce new constraint:

$$y = 3(x_{A1} + x_{B1} + x_{C1}) + 6(x_{A2} + x_{B2} + x_{C2}) + 4(x_{A3} + x_{B3} + x_{C3}) + 5(x_{A4} + x_{B4} + x_{C4}) - 30000$$

- Decision variable (total dollar cost of excess treatment) $y \ge 0$
- Add -0.2 y to the objective
- Drop inequality (*)
- The new formulation is on the next slide

$$\max 5.5 \sum_{j} x_{Aj} + 4.5 \sum_{j} x_{Bj} + 3.5 \sum_{j} x_{Cj} - 0.2y$$
s.t. $x_{A1} \le 0.3 \sum_{j} x_{Aj}$

$$x_{A2} \ge 0.4 \sum_{j} x_{Aj}$$

$$x_{A3} \le 0.5 \sum_{j} x_{Aj}$$

$$x_{A4} = 0.2 \sum_{j} x_{Aj}$$

$$x_{B1} \le 0.5 \sum_{j} x_{Bj}$$

$$x_{B2} \ge 0.1 \sum_{j} x_{Bj}$$

$$x_{B2} \ge 0.1 \sum_{j} x_{Bj}$$

$$x_{C1} \le 0.7 \sum_{j} x_{Cj}$$

$$1500 \le x_{A1} + x_{B1} + x_{C1} \le 3000$$

$$1000 \le x_{A2} + x_{B2} + x_{C2} \le 2000$$

$$2000 \le x_{A3} + x_{B3} + x_{C3} \le 4000$$

$$500 \le x_{A4} + x_{B4} + x_{C4} \le 1000$$

$$y = 3(x_{A1} + x_{B1} + x_{C1}) + 6(x_{A2} + x_{B2} + x_{C2})$$

$$+4(x_{A3} + x_{B3} + x_{C3}) + 5(x_{A4} + x_{B4} + x_{C4}) - 30000$$

$$y, x_{A1}, x_{A2}, \dots, x_{C4} \ge 0$$

A Simple AMPL Example

	Product A	Product B
Profit Per Unit	5	8
Machine time	1	1
Storage Space	5	9

Total machine time = 6; Total storage space = 45;

example.mod

set PRODUCT;
set RESOURCE;
param usage {i in RESOURCE, j in PRODUCT};
param profit {j in PRODUCT};
param avail {i in RESOURCE};
var X {j in PRODUCT}>=0;

maximize Total_Profit: sum {j in PRODUCT} profit[j]*X[j];

subject to Resource_Constraints (i in RESOURCE):

example.dat

set PRODUCT := A B; set RESOURCE := machine space; param usage: A B:= machine 1 1 space 5 9; param profit:= A 5 B 8; param: avail:= machine 6 space 45;

sum{j in PRODUCT} usage[i, j]*X[j]<=avail[i];</pre>

Formulate in AMPL, solve with CPLEX

- Install AMPL
- Start AMPL using AMPL IDE or at command line

ampl: model example.mod;

ampl: data example.dat;

ampl: option solver cplex;

ampl: solve;

CPLEX 12.5.0.0: optimal solution; objective 41.25

2 dual simplex iterations (1 in phase I)

ampl: display X;

X [*] := A 2.25 B 3.75

: