AM 121: Intro to Optimization Models and Methods

Lecture 19: Stochastic Optimization

Yiling Chen

Lesson Plan

• Two-stage stochastic optimization
 – Stage one, and stage two (recourse)
• The Farmer’s problem
• The optimal stochastic solution
• EVPI and VSS
• Analytic solution method
• Sample average approximation method

Reading: “A tutorial on stochastic programming,” Schapiro and Philpott, March 2007 (sections 1 and 2)
Stochastic Optimization

MDP: \(M = (S, A, P, R) \)
m states, \(n \) actions

Decision variables in the LP are \(\pi(s,a) \). Can only solve if \(m \times n \) is small.

But \(n \) may be large (e.g., we consider the “contractor’s problem” where the decision is the subset of projects to take.)

\(m \) may be very large (even infinite, e.g. realization of the time required to complete a project.)

Two-stage stochastic optimization:

Decision \(x \in X \) at time step 1

External uncertainty: some random event \(\xi \) occurs (irrespective of decision \(x \))

Decision \(y \) taken at time step 2.
Examples

- **Newsdelivery problem.** Buy x papers at time 1, cost c. At time 2, uncertain demand ξ realized and sell $\min(x, \xi)$ for price $p>c$; return $\max(x-\xi,0)$ for price $r<c$.

- **Farmer’s problem.** Plant x crops at time 1. At time 2, uncertain weather ξ realized and can buy and sell crops to ensure enough feed for animals, make profit.

- **Contractor problem.** Accept some projects x at time 1. Each project brings a reward. At time 2, realize amount of resources ξ needed for each project and can recruit additional workers at time 2 as necessary.

Two-stage stochastic optimization

```
stage 1         stage 2

x -> y(x, \xi_1) \quad \text{Scenario 1}
\quad \xi_2 \quad \quad \quad \xi_2 \quad \quad \quad \xi_3
y(x, \xi_2) \quad \text{Scenario 2}
\quad \xi_3 \quad \quad \quad \xi_3
y(x, \xi_3) \quad \text{Scenario 3}
```

initial decision recourse decision
Example: Farmer’s problem
\((\text{Birge \& Louveaux' 97})\)

- A farmer has 500 acres to plant wheat, grain and sugar beets. Wants to maximize profit.
- First suppose that there is no uncertainty, and the yield is exactly known to the farmer.

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Corn</th>
<th>Beets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (T/acre)</td>
<td>2.5</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Cost ($/acre)</td>
<td>150</td>
<td>230</td>
<td>260</td>
</tr>
<tr>
<td>Sell price ($/T)</td>
<td>170</td>
<td>150</td>
<td>36 (under 6000 T) 10 (above 6000 T)</td>
</tr>
<tr>
<td>Purchase price ($/T)</td>
<td>238</td>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>Min requirement (T)</td>
<td>200</td>
<td>240</td>
<td>-</td>
</tr>
</tbody>
</table>

Formulation without Uncertainty

- **Stage 1:** \(x_1, x_2, x_3 = \) acres to plant for each crop
- **Stage 2:**
 - \(y_1^b, y_1^s = \) amount to buy, sell of crop 1
 - \(y_2^b, y_2^s = \) amount to buy, sell of crop 2
 - \(y_3^{s1}, y_3^{s2} = \) amount to sell of crop 3 at high, low price

\[
\begin{align*}
\text{max} \quad & -150x_1 - 230x_2 - 260x_3 \\
& - 238y_1^b + 170y_1^s - 210y_2^b + 150y_2^s + 36y_3^{s1} + 10y_3^{s2} \\
\text{s.t.} \quad & x_1 + x_2 + x_3 \leq 500 \quad \text{(land)} \\
& 2.5x_1 + y_1^b - y_1^s \geq 200 \quad \text{(quotas)} \\
& 3x_2 + y_2^b - y_2^s \geq 240 \\
& y_3^{s1} + y_3^{s2} \leq 20x_3 \\
& y_3^{s1} \leq 6000 \quad \text{(beets)} \\
& x_1, x_2, \ldots, y_1^b, \ldots, y_3^{s2} \geq 0
\end{align*}
\]
Optimal solution (No uncertainty)

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Corn</th>
<th>Beets</th>
</tr>
</thead>
<tbody>
<tr>
<td>acres</td>
<td>120</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td>yield (T)</td>
<td>300</td>
<td>240</td>
<td>6000</td>
</tr>
<tr>
<td>sales</td>
<td>100</td>
<td>-</td>
<td>6000</td>
</tr>
<tr>
<td>purchase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Basic rationale in terms of profit per acre:
- wheat: $170(2.5) – $150 = $275
- corn: $150(3) – $230 = $220
- beets (high price): $36(20) – $260 = $460
- beets (low price): $10(20) – $260 = -$60

Farmer’s problem with uncertainty

- **Weather** may be “good” or “normal” or “poor.” This affects the yield on each crop
- Given this **uncertainty**, what is optimal **decision in stage one** about crops to plant?
- What will the farmer than do in the stage two recourse step?
Warm-up: Omniscience

Let’s first suppose the farmer can predict the weather...

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Corn</th>
<th>Beets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal decision if weather good</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acres</td>
<td>183.3</td>
<td>66.7</td>
<td>250</td>
</tr>
<tr>
<td>yield (T)</td>
<td>550</td>
<td>240</td>
<td>6000</td>
</tr>
<tr>
<td>sales</td>
<td>350</td>
<td>-</td>
<td>6000</td>
</tr>
<tr>
<td>purchase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Corn</th>
<th>Beets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal decision if weather normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acres</td>
<td>120</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td>yield (T)</td>
<td>300</td>
<td>240</td>
<td>6000</td>
</tr>
<tr>
<td>sales</td>
<td>100</td>
<td>-</td>
<td>6000</td>
</tr>
<tr>
<td>purchase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Corn</th>
<th>Beets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal decision if weather poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acres</td>
<td>100</td>
<td>25</td>
<td>375</td>
</tr>
<tr>
<td>yield (T)</td>
<td>200</td>
<td>60</td>
<td>6000</td>
</tr>
<tr>
<td>sales</td>
<td>-</td>
<td>-</td>
<td>6000</td>
</tr>
<tr>
<td>purchase</td>
<td>-</td>
<td>180</td>
<td>-</td>
</tr>
</tbody>
</table>
Comparing the Omniscient solutions

<table>
<thead>
<tr>
<th></th>
<th>good</th>
<th>normal</th>
<th>poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>wheat (acres)</td>
<td>183.3</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>corn (acres)</td>
<td>66.7</td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td>beets (acres)</td>
<td>250</td>
<td>300</td>
<td>375</td>
</tr>
</tbody>
</table>

A lot of variation in the right thing to do: It would be best to plant between 183 and 100 acres of wheat, depending on the weather. The farmer is worried. What to do?!

Two-stage Stochastic Optimization

- Decision variables for stage two depend on the realization of the weather
 - ξ_1 :: good weather
 - ξ_2 :: normal weather
 - ξ_3 :: poor weather
- Suppose each uncertain event is equally likely
\[
\begin{align*}
\text{max} & \quad -150x_1 - 230x_2 - 260x_3 \\
& + \frac{1}{3} (-238y_{11}^b + 170y_{11}^s - 210y_{21}^b + 150y_{21}^s + 36y_{31}^{s1} + 10y_{31}^{s2}) \\
& + \frac{1}{3} (-238y_{12}^b + 170y_{12}^s - 210y_{22}^b + 150y_{22}^s + 36y_{32}^{s1} + 10y_{32}^{s2}) \\
& + \frac{1}{3} (-238y_{13}^b + 170y_{13}^s - 210y_{23}^b + 150y_{23}^s + 36y_{33}^{s1} + 10y_{33}^{s2}) \\
\text{s.t.} & \quad x_1 + x_2 + x_3 \leq 500 \\
& \begin{cases}
3x_1 + y_{11}^b - y_{11}^s \geq 200 \\
3.6x_2 + y_{21}^b - y_{21}^s \geq 240 \\
y_{31}^{s1} + y_{31}^{s2} \leq 24x_3 \\
y_{31} \leq 6000
\end{cases} \quad \text{stage 1} \\
& \begin{cases}
2.5x_1 + y_{12}^b - y_{12}^s \geq 200 \\
3x_2 + y_{22}^b - y_{22}^s \geq 240 \\
y_{32}^{s1} + y_{32}^{s2} \leq 20x_3 \\
y_{32} \leq 6000
\end{cases} \quad \text{stage 2: good weather} \\
& \begin{cases}
2x_1 + y_{13}^b - y_{13}^s \geq 200 \\
2.4x_2 + y_{23}^b - y_{23}^s \geq 240 \\
y_{33}^{s1} + y_{33}^{s2} \leq 16x_3 \\
y_{33} \leq 6000
\end{cases} \quad \text{stage 2: normal weather} \\
& \begin{cases}
2x_1 + y_{13}^b - y_{13}^s \geq 200 \\
2.4x_2 + y_{23}^b - y_{23}^s \geq 240 \\
y_{33}^{s1} + y_{33}^{s2} \leq 16x_3 \\
y_{33} \leq 6000
\end{cases} \quad \text{stage 2: bad weather} \\
x_1, x_2, \ldots, y_{11}^b, \ldots, y_{33}^{s2} \geq 0
\end{align*}
\]
Optimal Solution with Uncertainty

<table>
<thead>
<tr>
<th></th>
<th>Wheat</th>
<th>Corn</th>
<th>Beets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres</td>
<td>170</td>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>Yield (T)</td>
<td>510</td>
<td>288</td>
<td>6000</td>
</tr>
<tr>
<td>Sales (T)</td>
<td>310</td>
<td>48</td>
<td>6000</td>
</tr>
<tr>
<td>Purchase (T)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yield (T)</td>
<td>425</td>
<td>240</td>
<td>5000</td>
</tr>
<tr>
<td>Sales (T)</td>
<td>225</td>
<td>-</td>
<td>5000</td>
</tr>
<tr>
<td>Purchase (T)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yield (T)</td>
<td>340</td>
<td>192</td>
<td>4000</td>
</tr>
<tr>
<td>Sales (T)</td>
<td>140</td>
<td>-</td>
<td>4000</td>
</tr>
<tr>
<td>Purchase (T)</td>
<td>-</td>
<td>48</td>
<td>-</td>
</tr>
</tbody>
</table>

Profit: $108,390

without uncertainty:

<table>
<thead>
<tr>
<th></th>
<th>good</th>
<th>normal</th>
<th>poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>wheat (acres)</td>
<td>183.3</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>corn (acres)</td>
<td>66.7</td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td>beets (acres)</td>
<td>250</td>
<td>300</td>
<td>375</td>
</tr>
</tbody>
</table>

stochastic solution

- Wheat: 170 acres, expected yield 183.3, sales 120, purchase 100
- Corn: 80 acres, expected yield 66.7, sales 80, purchase 25
- Beets: 250 acres, expected yield 250, sales 300, purchase 375

omniscient solution

- Wheat: 170 acres, expected yield 183.3, sales 120, purchase 100
- Corn: 80 acres, expected yield 66.7, sales 80, purchase 25
- Beets: 250 acres, expected yield 250, sales 300, purchase 375

in expectation solution

- Wheat: 170 acres, expected yield 183.3, sales 120, purchase 100
- Corn: 80 acres, expected yield 66.7, sales 80, purchase 25
- Beets: 250 acres, expected yield 250, sales 300, purchase 375

Expected value of Perfect Information (EVPI)

- $114,667 - $108,390 = $6,277

Value of Stochastic Solution (VSS)

- $108,390 - $107,240 = $1,150
EVPI and VSS

• Let $V^*(\xi)$ denote value of optimal solution for scenario ξ
• Let $Q(x,\xi)$ denote value of optimal recourse decision given x and ξ
• EVPI: expected value of perfect information
 \[E_\xi[V^*(\xi)] - \max_x (c^T x + E_\xi[Q(x,\xi)]) \]
• VSS: expected value of stochastic solution
 \[\max_x (c^T x + E_\xi[Q(x,\xi)]) - (c^T \bar{x} + E_\xi[Q(\bar{x},\xi)]) \]
 where \bar{x} is the solution assuming $\xi = E_\xi[\xi]$

Stochastic Programming

• First stage decision $x \in \mathbb{R}^n$. Scenario $\xi=(q,T,W,h)$ defines data for second-stage problem.
• $y \in \mathbb{R}^m$ second-stage decision

\[
\begin{align*}
\max_x & \quad c^T x + E_\xi[Q(x,\xi)] \\
\text{s.t.} & \quad A x \leq b \\
& \quad x \geq 0
\end{align*}
\]

where
\[
Q(x,\xi) = \max_y q^T y
\]
\[
\begin{align*}
\text{s.t.} & \quad T x + W y \leq h \\
& \quad y \geq 0
\end{align*}
\]

First-stage problem:
maximize the sum profit of the first stage and the expected profit of the second stage.

Second-stage problem:
given x and realized scenario $\xi=(q,T,W,h)$, maximize profit in second stage.
Example: Second-stage problem for Farmer’s problem

• Only T matrix is uncertain in the farmer’s problem
• Let t_i denote the yield of crop i; scenario $\xi = (t_1, t_2, t_3)$
• For a given scenario, the recourse problem is:

$\begin{align*}
Q(x, \xi) &= \max -238y_1^b + 170y_1^s - 210y_2^b + 150y_2^s + 36y_3^{s_1} + 10y_3^{s_2} \\
\text{s.t.} & \quad t_1x_1 + y_1^b - y_1^s \geq 200 \\
& \quad t_2x_2 + y_2^b - y_2^s \geq 240 \\
& \quad y_3^{s_1} + y_3^{s_2} \leq t_3x_3 \\
& \quad y_3^{s_1} \leq 6000
\end{align*}$

Computational approaches

• (1) small number of scenarios ξ, can enumerate to form a single LP and solve (e.g., farmer’s problem.)

• (2) infinite set of possible scenarios ξ, but can solve for $E_{\xi}[Q(x, \xi)]$ \textbf{analytically}. Do this, and solve first-stage decision analytically (e.g., newsdelivery problem.)

• (3) no analytic solution available, and cannot enumerate all ξ. Adopt the \textbf{sample average approximation (SAA)} (e.g., contractor’s problem.)
Computational approaches

• (1) **small number of scenarios** ξ, can enumerate to form a single LP and solve (e.g., farmer’s problem.)

• (2) infinite set of possible scenarios ξ, but can solve for $E_{\xi}[Q(x,\xi)]$ **analytically**. Do this, and solve first-stage decision analytically (e.g., newsdelivery problem.)

• (3) no analytic solution available, and cannot enumerate all ξ. Adopt the **sample average approximation (SAA)** (e.g., contractor’s problem.)

Analytic approach: Example

• Student group giving away a Harvard-Yale T-shirt
• Must decide how many to order x at cost c. Demand ξ uncertain; per-unit cost b for “backorder cost” if $\xi>x$, per-unit holding cost h if $x>\xi$.
• $c=1.0$, $b=1.5$, $h=0.1$, $\xi \sim U(0,100)$

• Solve: $\min cx + E_{\xi}[Q(x,\xi)] = \min cx + W(x)$

 $Q(x,\xi) = b \max(\xi-x,0) + h \max(x-\xi,0)$

• Can solve for x^* by first-order optimality: $c+W'(x)=0$
Example: \(cx + Q(x, \xi) \) for \(\xi = 50 \)

Plot \(cx + Q(x, \xi) = 1x + 1.5 \max(50-x,0) + 0.1 \max(x-50,0) \)

- Let \(f \) denote prob density function on \(\xi \); \(F \) denote CDF.
- \(W(x) = E_\xi[b \max(\xi-x,0)] + E_\xi[h \max(x-\xi,0)] \)
- \(d/dx E_\xi[\max(\xi-x,0)] = d/dx \int_0^\infty (\xi-x)f(\xi)d\xi = -\int_0^\infty f(\xi)d\xi = -\Prob(\xi \geq x) \)
- \(d/dx E_\xi[\max(x-\xi,0)] = d/dx \int_0^\xi (x-\xi)f(\xi)d\xi = \int_0^\xi f(\xi)d\xi = \Prob(\xi \leq x) \)
- \(W'(x) = -b(1-F(x)) + hF(x) \)
- Set \(c - W'(x) = 0 \): need \(F(x) = (b-c/b+h) \)
- Solve, get \(x^* \approx F^{-1}(0.3125) \)
- If \(\xi \sim U(0,100) \); optimal \(x^* \approx 31.25 \).
• \(W(x) = W(0) + \int_0^x W'(z) \, dz \)
 \[= b \, E_\xi [\xi] + \int_0^x [-b + (b+h)F(z)] \, dz \]
 \[= b \, E_\xi [\xi] - bx + (b+h) \int_0^x F(z) \, dz \]

• \(cx + W(x) = bE_\xi [\xi] + (c-b)x + (b+h) \int_0^x F(z) \, dz \)
 \[= (1.5)(50) + (-0.5)x + 1.6 \int_0^x z/100 \, dz \]
 \[= 75 - 0.5x + 0.008x^2 \]
Solving stochastic programs

• (1) small number of scenarios ξ, can enumerate to form a single LP and solve (e.g., farmer’s problem.)

• (2) infinite set of possible scenarios ξ, but can solve for $E_{\xi}[Q(x,\xi)]$ analytically. Do this, and solve first-stage decision analytically (e.g., newsdelivery problem.)

• (3) no analytic solution available, and cannot enumerate all ξ. Adopt the sample average approximation (SAA) (e.g., contractor’s problem.)

Sample Average Approximation (Kleywegt et al. 2001)

• In practice, a closed form solution is rarely available.

• Can instead approximate $E_{\xi}[Q(x, \xi)]$ by sampling K scenarios, with

$$E_{\xi}[Q(x, \xi)] \approx \sum_{k=1}^{K} p_k Q(x, \xi_k)$$

where $p_k = 1/K$ is the prob of scenario k.

• Proceed as earlier, solve:

$$\min_{x,y} \quad c^T x + \sum_k p_k q_k^T y_k$$

s.t. $T_k x + W_k y_k \leq h_k$ for all k
Example: T-shirt problem

- Consider two demand scenarios
 - $\xi_1 = 20$, $\xi_2 = 80$
 - Objective: $cx + E_{\xi}[Q(x, \xi)] = cx + \frac{1}{2} Q(x, \xi_1) + \frac{1}{2} Q(x, \xi_2)$
- Solve as an LP

- Can also consider three (or more!) scenarios: $\xi_1 = 20$, $\xi_2 = 50$, $\xi_3 = 80$ with prob 2/5, 1/5 and 2/5.

Example: Approximating $cx + E_{\xi}[Q(x, \xi)]$

2 point approx

3 point approx
The Sample Average Approximation Method

(Kleywegt et al. 2001)

• Sample K scenarios ξ_1, \ldots, ξ_K and solve

 \[
 \min_x \left[c^T x + \frac{1}{K} \sum_k Q(x, \xi_k) \right]
 \]

 • Let \hat{x} denote this solution

SAA: Theoretical properties

(Kleywegt et al. 2001)

• Let $\hat{\mu}_K$ denote expected value of solution \hat{x}_K to SAA, based on K samples
• Let S_k^d denote all solutions “close” to \hat{x}_K (within distance d)
• Let V^* denote expected value of optimal solution x^*
• Let S^d denote all solutions “close” to optimal x^* (within distance d)

Theorem:

• $\lim_{K \to \infty} \hat{\mu}_K = V^*$.
• $S_k^d \subseteq S^d$ with probability 1 as $K \to \infty$, for any distance d.
Applications

• Contractor: Set of projects, each pay an amount, but take uncertain time. May need to take-on workers as necessary in recourse. Which set of projects to take on?

• Airline crew scheduling: Assign crew to routes, but routes take uncertain time. May need to pay over-time.

Empirical Results (Contractor)

Contractor’s problem with 1000 experiments; and 20 projects.
Summary

• Two-stage stochastic optimization

• Solve first stage in anticipation of distribution over scenarios. Maximize expected value.

• Second stage decision is the “recourse” decision. Made with knowledge of first stage decision and realized scenario.

• EVPI and VSS as measures of value of stochastic optimization

• Analytical method; and SAA method.