AM 121: Intro to Optimization Models and Methods

Lecture 15: Cutting plane methods

Yiling Chen
SEAS

Lesson Plan

• Cuts and the separation problem
• Cutting plane methods
• Chvatal-Gomory cuts
• Gomory’s cutting plane algorithm

Textbook Reading: 8.4
Recall: Convex Hull

- **Definition.** Given set $X \subseteq \mathbb{Z}^n$, the convex hull of $X=\{x^1, \ldots, x^t\}$ is $\text{conv}(X)=\{x: x=\sum_{k=1}^{t} \lambda_k x^k, \sum_{k=1}^{t} \lambda_k=1, \lambda_k \geq 0 \text{ for all } k\}$

(Defn also generalizes to allow $X \subseteq \mathbb{R}^n$)

- **Prop.** Extreme points of $\text{conv}(X)$ all lie in X.

- **Prop.** Can solve IP via solving LP on $\text{conv}(X)$.

Challenge: May need exponential number of inequalities to describe $\text{conv}(X)$.

Cut Generation

- **Q:** What else can we do to improve the strength of formulations?

- **A:** Automatically generate new inequalities ("cuts") that try approximate the convex hull.

- **Why this might be useful:**
 - improve speed of branch-and-bound (stronger formulation, improved bounds)
 - allow a completely new way to solve IPs
• **Definition.** An inequality $a^T x \leq b$ is a **valid inequality** for set $X \subseteq \mathbb{R}^n$ if $a^T x \leq b$ for all $x \in X$.

- **Defn.** Given set $X \subseteq \mathbb{R}^n$ and $x^* \in \mathbb{R}^n$, the **separation problem** is “is $x^* \in \text{conv}(X)$?” If NO, find a valid inequality that is violated by x^*.
- **Defn.** A **cut** is a valid inequality that separates the current fractional solution x^*.
Cut strength

- **Definition.** Cut c is stronger than cut c' if $z^{LP} < z^{LP'}$, where these are the LP upper-bounds of the LPRs.

The Cutting Plane Method

- Step 1: Solve LPR. Get x^*.
- Step 2: If x^* integral, **stop**. Else, find a valid inequality that excludes x^* (a “cut”)
- Step 3: Go to Step 1.

⇒ work to strengthen the formulation until the IP is solved
Questions

• How to generate strong cuts, and quickly?
• Will a cutting plane algorithm always terminate with the optimal IP solution?

• For warm-up, let’s look at examples of valid inequalities.

Example 1

• $X = \{ x \in \{0, 1\}^5 : 3x_1 – 4x_2 + 2x_3 – 3x_4 + x_5 \leq -2 \}$
• If $x_2 = x_4 = 0$, the LHS must be ≥ 0, and the solution is infeasible.
 – By integrality, a valid inequality is $x_2 + x_4 \geq 1$.
 – Does not remove any $x \in X$. Removes fractional $x = (0, 1/3, 0, 1/3, 0)$.
• If $x_1 = 1$ and $x_2 = 0$, the LHS must be ≥ 0, and the solution is infeasible.
 – By integrality, a valid inequality is $x_1 \leq x_2$.
 – Does not remove any $x \in X$. Removes fractional $x = (2/6, 1/6, 0, 1, 0)$.
Example 2

• $X = \{(x,y) : x \leq 9999y, \ 0 \leq x \leq 5, \ x \in \mathbb{Z}, \ y \in \{0,1\}\}$

• Feasible set is $X = \{(0,0), (0,1), (1,1), (2,1), \ldots, (5,1)\}$

• A valid inequality is $x \leq 5y$.
 – Does not remove any solutions in X.
 – Removes fractional solutions such as $(1,0.1)$.

Example 3

• $X = \{(x,y) : x \leq 10y, \ 0 \leq x \leq 14, \ y \in \mathbb{Z}_{\geq 0}\}$

• $x \leq 6 + 4y$ is valid.
Example 4 (Chvátal-Gomory inequality)

• Consider \(X = P \cap \mathbb{Z}^2 \), where \(P \) is given by:
 \[
 7x_1 - 2x_2 \leq 14 \\
 x_2 \leq 3 \\
 2x_1 - 2x_2 \leq 3 \\
 x \geq 0
 \]

• Form a linear combination of inequalities. Suppose we adopt multipliers \(u = (2/7, 37/63, 0) \geq 0 \). Obtain:
 \[
 2x_1 + 1/63x_2 \leq 121/21
 \]

• Valid to round coeff’s on LHS down to nearest integer:
 \[
 2x_1 + 0x_2 \leq 121/21
 \]

• Because LHS is \textbf{integral} for all \(x \in X \), valid to round RHS down to nearest integer. Obtain:
 \[
 2x_1 + 0x_2 \leq 5
 \]

Cuts off \((20/7, 3)\), which is optimal fractional solution.

General Approach to CG Inequality

\(X = P \cap \mathbb{Z}^n \), \(P = \{ x \in \mathbb{R}^n_{\geq 0} : Ax \leq b \} \), some \(u \in \mathbb{R}^m_{\geq 0} \)

Three steps:
(i) the inequality formed by combining rows of \(A \) with nonnegative weights \(u \) is valid for \(X \)
(ii) the inequality formed from floor of coefficients on the LHS is valid for \(X \) because \(x \geq 0 \)
(iii) the inequality formed from floor of RHS value is valid for \(X \) because \(x \in X \) is integer, and LHS is integer
• **Theorem.** Given any fractional, extreme point x^* of P, there exists multipliers $u \geq 0$ s.t. the CG inequality is valid and cuts off x^*.

$=>$ CG cuts are complete for IP; in principle we can solve IPs by repeated CG cuts.

But:
• How many CG cuts do we need to generate?
• **How do we generate the right cuts?**

Answer: Use Gomory’s algorithm

• For an IP with integer coefficients and integer right-hand side values.
• Generates CG cuts, and sure to converge to the optimal IP feasible solution.
• Algorithm uses the simplex tableau, generates a cut from **one** inequality; in particular, an inequality corresponding to any row in the tableau with a fractional RHS value.
• When there are no such fractional row left, we have a $\{0,1\}$ solution.
Gomory's cutting plane algorithm

• “Outline of an algorithm for Integer solutions to linear programs,”
 R.E.Gomory, Bulletin of the American Mathematical Society 64, 275-278 (1958)
• “An algorithm for Integer solutions to Linear programs,”
• “Edmonds polytopes and a hierarchy of combinatorial problems,”
 V. Chvatal, Discr. Math. 4, 305–337 (1973)

Example (Gomory’s algorithm)

• For an IP with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$.
• For example:

$$z = \max 4x_1 - x_2$$

s.t.

$$7x_1 - 2x_2 \leq 14$$

$$x_2 \leq 3$$

$$2x_1 - 2x_2 \leq 3$$

$$x_1, \quad x_2 \geq 0, \text{ integer}$$

• Introduce slack variables x_3, x_4 and x_5.
 – A and b integer: therefore, we can insist that slack variables are non-negative, integer.
Generating a CG cut

• $z + \frac{4}{7} x_3 + \frac{1}{7} x_4 = \frac{59}{7}$

 $x_1 + \frac{1}{7} x_3 + \frac{2}{7} x_4 = \frac{20}{7}$

 $x_2 + x_4 = 3$

 $-\frac{2}{7} x_3 + \frac{10}{7} x_4 + x_5 = \frac{23}{7}$

• $B=\{1, 2, 5\}$ and $x^*(20/7, 3, 0, 0, 23/7)$

• Form a CG-cut from a single row. Choose any row with a fractional RHS.
 – the “u” vector is implicit in the simplex algorithm.
 – it is allowed to apply the CG procedure to an equality, since if $a^T x = b$, then $a^T x \leq b$.

• Suppose we choose row corresponding to basic variable x_1.

• The CG cut is as follows (and it cuts off x^*):

 $x_1 + 0x_3 + 0x_4 \leq 2$

• $z + \frac{4}{7} x_3 + \frac{1}{7} x_4 = \frac{59}{7}$

 $x_1 + \frac{1}{7} x_3 + \frac{2}{7} x_4 = \frac{20}{7}$ (1)

 $x_2 + x_4 = 3$

 $-\frac{2}{7} x_3 + \frac{10}{7} x_4 + x_5 = \frac{23}{7}$

• Want to re-solve the LP with new cut:

 $-x_1 - 0x_3 - 0x_4 \geq -2$ (*)

• Useful to reformulate in terms of non-basic vars only

• Add (1) and rearrange:

 $\frac{1}{7} x_3 + \frac{2}{7} x_4 \geq \frac{6}{7}$ (**)

• Note the difference between the LHS and RHS in (*) is integral; therefore, also true for (**)

• Can introduce excess variable $x_6 \geq 0$, and insist that it is integral.
The general rule for the CG cut on row i with fractional RHS, is \(\sum_{j \in B} \pi_j x_j \geq \pi_0 \); with
\[
\pi_i = \bar{a}_{ij} - \left[\bar{a}_{ij} \right] \\
\pi_o = \bar{b}_i - \left| \bar{b}_i \right|
\]

- \(z + \frac{4}{7} x_3 + \frac{1}{7} x_4 = \frac{59}{7} \)
- \(x_1 + \frac{1}{7}x_3 + \frac{2}{7} x_4 = \frac{20}{7} \)
- \(x_2 + x_4 = 3 \)
- \(-\frac{2}{7} x_3 + \frac{10}{7} x_4 + x_5 = \frac{23}{7} \)

Let's check on row 1:
- \(\pi_3 = \frac{1}{7} - 0 = \frac{1}{7} \)
- \(\pi_4 = \frac{2}{7} - 0 = \frac{2}{7} \)
- \(\pi_0 = \frac{20}{7} - 2 = \frac{6}{7} \)
\[
1/7x_3 + 2/7x_4 \geq 6/7 \text{ (**)}
\]

Note: all coefficients will be \(\geq 0 \)

Add (**) and re-optimize.

New optimal tableau:
\[
z + \frac{1}{2} x_5 + 3 x_6 = \frac{15}{2} \\
x_1 + x_6 = 2 \\
x_2 - \frac{1}{2} x_5 + x_6 = \frac{1}{2} \\
x_3 - x_5 - 5 x_6 = 1 \\
x_4 + \frac{1}{2} x_5 + 6 x_6 = \frac{5}{2}
\]

B={1,2,3,4} and \(x^* = (2, \frac{1}{2}, 1, \frac{5}{2}, 0, 0) \)

Now arbitrarily choose to add the CG cut for the row corresponding to basic var \(x_2 \)

The CG cut is \(\frac{1}{2} x_5 \geq \frac{1}{2} \). Add integer, non-neg excess var \(x_7 = \frac{1}{2} x_5 - \frac{1}{2} \).

Re-solve
• Adding constraint, re-optimize. New tableau:

\[
\begin{align*}
 z & + 3x_6 + x_7 = 7 \\
 x_1 & + x_6 = 2 \\
 x_2 & + x_6 - x_7 = 1 \\
 x_3 & - 5x_6 - 2x_7 = 2 \\
 x_4 & + 6x_6 + x_7 = 2 \\
 x_5 & - x_7 = 1
\end{align*}
\]

• \(x^* = (2, 1, 2, 2, 1, 0, 0) \)

• Integral! \((x_1, x_2) = (2,1)\) solves the original IP.

• Let’s map the cuts back to the \((x_1, x_2)\) space
• First cut: \(x_1 \leq 2 \)
• Second cut: \(\frac{1}{2}x_5 \geq \frac{1}{2} \). Substituting for \(x_5 = 3 - 2x_1 + 2x_2 \), rearrange and obtain \(x_1 - x_2 \leq 1 \).
Summary: Gomory’s algorithm

- **Repeat:**
 - Solve LP.
 - If integral, STOP. Else, generate a CG-cut from **any** row with a fractional RHS.

- **Thm.** Gomory’s algorithm will solve an IP with integer coefficients and integer RHS values, converging after a finite number of iterations.

- Not of practical interest, but transformative method.
- Can solve IPs without branch and bound! Inspired effort into identifying families of cuts.
Summary

- Cuts the separation problem
- Cutting plane method
- Chvatal-Gomory cuts
- Gomory’s cutting plane method
 - Solves IPs without branch and bound
 - Works on IPs with integer coefficients and integer RHS (also extends to IPs with rational coefficients, rational RHS values.)