Lesson Plan

• Branch and Bound review
• Node selection
• Branching decision
• Formulation strength
• CPLEX and “Cut generation”
Review

\[
\begin{align*}
\text{max } & 5x_1 + 8x_2 \\
\text{s.t. } & x_1 + x_2 \leq 6 \\
& 5x_1 + 9x_2 \leq 45 \\
& x_1, x_2 \geq 0, \text{ integer}
\end{align*}
\]
Branch and Bound Method

• Maintain a list of open subproblems, an incumbent x with value z, and an upper bound \bar{z}

• **Node selection decision**: pick open subproblem and solve LP relaxation
• **Branching decision**: if can’t fathom the node, then pick a fractional variable and branch

• Continue until all open subproblems are fathomed, or “optimality gap” is acceptable.
Node selection

Decision

• Depth-first search (solve a node just generated)
 + Find an integer solution quickly. This way, open subproblems can be “fathomed by bound.”
 + Can obtain next LP solution via dual simplex pivots, since branching adds or modifies a constraint.

• Best-bound first (solve node k with highest LPR z_k.)
 (Upper bound on subproblem is inherited from parent)
 + Never solve a subproblem with an upper-bound less than the value of optimal integer solution.
 + Improve upper bounds quickly, try to prove optimality of current incumbent.

• In practice: initial DFS (“diving”) followed by a mix of best-bound and DFS is effective.

DFS will solve one of S^5 or S^6
“Best-bound first” will solve S^4
(since $41 > 40 \frac{5}{9}$)
Example: Dual Pivots

• Optimal tableau for LPR of IP is
 \[
 \begin{align*}
 z &+ 1.25x_3 + 0.75x_4 = 41.25 \\
 x_1 &+ 2.25x_3 - 0.25x_4 = 2.25 \\
 x_2 &- 1.25x_3 + 0.25x_4 = 3.75
 \end{align*}
 \]
 (1)

• Consider LPR of \(S^2 = S^0 \cap \{ x_2 \geq 4 \} \)
• Introduce excess variable \(x_5 \geq 0 \), and write \(x_2 \geq 4 \) as
 \[
 x_2 - x_5 = 4
 \]
 (2)
• Establish basis \(B = \{ x_1, x_2, x_5 \} \) by \((1)' = (1) - (2) \)
 \[
 -1.25x_3 + 0.25x_4 + x_5 = -0.25
 \]
 \((2') \)

Using Dual Pivots in BnB

• Initial tableau for LPR of \(S^2 \) is dual feasible:
 \[
 \begin{align*}
 z &+ 1.25x_3 + 0.75x_4 = 41.25 \\
 x_1 &+ 2.25x_3 - 0.25x_4 = 2.25 \\
 x_2 &- 1.25x_3 + 0.25x_4 = 3.75
 \end{align*}
 \[
 -1.25x_3 + 0.25x_4 + x_5 = -0.25
 \]
 (2)
• Dual Pivot (\(x_5 \) out, \(x_3 \) in). Get:
 \[
 \begin{align*}
 z &+ x_4 + x_5 = 41 \\
 x_1 &+ 0.2x_4 + 1.8x_5 = 1.8 \\
 x_2 &- x_5 = 4 \\
 x_3 &- 0.2x_4 - 0.8x_5 = 0.2
 \end{align*}
 \]
• \(B = \{ x_1, x_2, x_3 \}, x_1^* = 1.8, x_2^* = 4, z^* = 41 \)
• One pivot! In general will take more than one pivot, but can often find new LP solution quickly.
Aside: Weak Dual Pairs

• Consider
 Primal: \(\max \{ c(x) : x \in X \} \)
 Dual: \(\min \{ w(y) : y \in Y \} \)
• Form a weak dual pair if \(c(x) \leq w(y), \forall x \in X, \forall y \in Y \)

• Proposition. \(\max \{ c^T x : Ax \leq b, x \geq 0, \text{integer} \} \) and \(\min \{ b^T y : A^T y \geq c, y \in \mathbb{R}^m_{\geq 0} \} \) form a weak dual pair.

• => any feasible solution to the dual of current (primal) LPR provides a valid upper bound.

• => means that don’t even need to solve dual to optimality. Can prune by bound earlier!

Branching Decision

• Most-fractional variable:
 – the variable with the fractional part closest to 0.5

• User priorities (e.g., “big decisions” first):
 – “the location of a facility is more consequential than the districts it serves” for example

• Strong branching:
 – “look ahead” before making a commitment to a branching decision

• Pseudocost method:
 – estimate effect on objective value of LPR of branching (approx form of strong branching, looks at what has happened earlier in problem)
Strong Branching: Example

$$S^0: (2.25, 3.75) \quad 41.25$$

which var branch at S^0?

Which most quickly improves the bound?

Answer: branching on x_2 since it minimizes the max bound

Strong Branching

Let C denote set of integer vars in current subproblem with a fractional assignment

For each $j \in C$:

(a) solve subproblem with $x_j \leq \lfloor x_j \rfloor$ and $x_j \geq \lceil x_j \rceil$

(b) let \bar{z}_j^D and \bar{z}_j^U denote the value of LP solns

Branch on $j^* = \arg\min_{j \in C} \max[\bar{z}_j^D, \bar{z}_j^U]$

Can also solve subproblems approximately, just using a few dual simplex pivots.
Unboundedness in IPs

(advanced material)

• If an LP relaxation is unbounded:
 – if the integer variables take on integer values, then IP is unbounded. Else, we can branch.

• But, BnB may not terminate on a problem that is infeasible or unbounded.

• Will terminate if feasible, bounded, or if all integer variables bounded.

\[
\begin{align*}
\text{min} & \quad 0 \\
1 \leq 3x - 3y & \leq 2 \\
x, y & \in \mathbb{Z}
\end{align*}
\]

Infeasible, but B&B keeps searching

Formulation Strength
Recall: Firehouse Location

Formulation (P₁):
• If m=2 sites, and n=4 districts:
 • $x_{11} + x_{21} + x_{31} + x_{41} \leq 4y_1$
 • $x_{12} + x_{22} + x_{32} + x_{42} \leq 4y_2$
 • m constraints

Alternate formulation (P₂):
• $x_{11} \leq y_1; x_{21} \leq y_1; x_{31} \leq y_1; x_{41} \leq y_1$
• $x_{12} \leq y_2; x_{22} \leq y_2; x_{32} \leq y_2; x_{42} \leq y_2$
• mn constraints

• **Definition.** The **LP relaxation** (LPR) of an IP replaces all integer variables with continuous variables.

• **Definition.** The **polyhedron of an IP** is the feasible region of the LPR.
Valid formulations

- Consider (IP) \(\max \{ c^T x : x \in S \subseteq \mathbb{Z}^n \} \)
- **Defn.** Polyhedron \(P \) is a valid formulation for the IP if \(P \cap \mathbb{Z}^n = S \)

![Diagram showing valid formulations](image)

Strong Formulations

- **Proposition.** Consider two valid formulations \(P_1 \) and \(P_2 \), with \(P_2 \subseteq P_1 \subseteq \mathbb{R}^n \). Then \(z_{2, LP} \leq z_{1, LP} \).
- **Proof.** Suppose \(z_{2, LP} > z_{1, LP} \). But \(x^* \) that is best in \(P_2 \) is also feasible in \(P_1 \). Contradiction!

- Say that “\(P_2 \) is stronger than \(P_1 \).”
Example

Tight “big M”:
• \(x_{11} + x_{21} + x_{31} + x_{41} \leq 4y_1 \) \(P_1 \)

Loose “big M”:
• \(x_{11} + x_{21} + x_{31} + x_{41} \leq 10y_1 \) \(P_1' \)

• Both are valid formulations.
• But \(P_1' \) has additional fractional solutions, e.g. \(x=(0.5, 0.5, 0.5, 0.5), \ y=(0.25) \)
• \(\Rightarrow P_1 \) is stronger than \(P_1' \)

Importance of Strong Formulations

Benefit 1:
Improve LP bounding \(\rightarrow \) more fathoming of open problems by bound. (main advantage).

Benefit 2:
If search is best-bound first, better guidance in regard to node selection.

Benefit 3:
Fewer optimal, non-integral solutions.
Convex Hull

- **Definition.** Given set $X \subseteq \mathbb{Z}^n$, the convex hull of $X=\{x^1, \ldots, x^t\}$ is $\text{conv}(X)=\{x: x^T\sum_{k=1}^{t} \lambda_k x^k, \sum_{k=1}^{t} \lambda_k = 1, \lambda_k \geq 0 \text{ for all } k\}$

- **Prop.** $\text{conv}(X)$ is a polyhedron.

- **Prop.** Extreme points of $\text{conv}(X)$ all lie in X.

- **Prop.** Can solve IP via solving LP on $\text{conv}(X)$.

An “Ideal” formulation!

Replace IP $\max\{c^T x: x \in X\}$ with the LP

$\{\max c^T x: x \in \text{conv}(X)\}$

- **Problem:** can require an exponential number of inequalities to define $\text{conv}(X)$
 - If $|X|=q$, may need as many as 2^q inequalities.
 - Better be the case, else we’d have P=NP!
Computational Complexity (Brief!)

- **Decision problems**: Is there a TSP tour cost ≤ 10?
- **P**: class of decision problems that can be solved in polynomial time ("easy")
- **NP**: class of problems for which when answer is YES there is easy (poly time) proof (e.g., TSP)

A problem is **NP-complete** if it is in **NP** and any problem in **NP** can be "reduced" (in poly time) to the problem; e.g. 0/1 integer programs.

Widely conjectured that **P ≠ NP**

Complexity of LP

(advanced material)

- The simplex method is fast in practice, but not worst-case polynomial time.

- First **polynomial-time** LP algorithm was devised in 1979 by Khachian (made headlines!).
- Khachian’s **Ellipsoid method** is an **interior point method**. Does not rely on vertex solutions. Fits an increasingly good ellipsoid approximation. Poly time

- In 1984, Karmarkar announced a poly-time interior-point method with solution times 50x better than simplex. Again made headlines!
• LP is in class P, however 0/1 IP is NP-complete.
• If a polynomially-sized description of \(\text{conv}(X) \) could be obtained for every IP, we could solve IPs in poly-time via reduction to LPs.

• Eureka! We would prove P=NP.

• So, some instances of an NP-hard problem (e.g., traveling salesperson) have a convex hull with an exp. num of extreme points; thus \(2^q \) inequalities to describe…

Alternative Goal

• Q: What else can we do (other than formulate the convex hull) to improve the strength of formulations?

• A: *Try to automatically approximate \(\text{conv}(X) \) on a given instance, strengthening the formulation.*
• **Defn.** A **valid inequality** may remove some fractional solns, but removes no integer solns.
• **Defn.** A **cut** is a valid inequality that **removes** the current fractional solution x^*.

![Diagram showing cuts and valid inequalities](image)

Looking at CPLEX

• IBM’s Ilog CPLEX solver is used by AMPL
• Routinely used to solve real world problems of large economic significance
Some CPLEX features

- Automated Cut Generation
 - At “root” node (Global cuts)
 - At search nodes (Local cuts)
- Automated bound strengthening
 - Tighten right-hand side
- Primal heuristics
 - Look for integer feasible solutions that are close to current fractional solution

Example

```ampl
var X1 integer >= 0;
var X2 integer >= 0;
maximize Obj: 5 * X1 + 8 * X2;
subject to C1: X1 + X2 <= 6;
subject to C2: 5 * X1 + 9 * X2 <= 45;
end;
```

```ampl
ampl: model simple.mod;
ampl: option solver cplex;
ampl: solve;
```
Enabling feedback to AMPL

```
option cplex_options 'timing = 1' # display timing info
     'mipdisplay=2'  # display MIP information
     'mipinterval=1'; # node interval

 timing=1: show how much cpu time used to solve the problem
 mipdisplay=2: show # of open nodes
 mipinterval=n: display information every n nodes and whenever it finds
    an integer solution
```

Root relaxation solution time = 0.00 sec. (0.00 ticks)

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Bound</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0+</td>
<td>41.2500</td>
<td>2</td>
<td>39.0000</td>
<td>40.0000</td>
<td>2</td>
<td>5.77%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>40.0000</td>
<td>2</td>
<td>40.0000</td>
<td>40.0000</td>
<td>2</td>
<td>3.12%</td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>cutoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Elapsed time = 0.01 sec. (0.03 ticks, tree = 0.00 MB)

Root node processing (before b&c):
Real time = 0.01 sec. (0.03 ticks)
Parallel b&c, 16 threads:
Real time = 0.00 sec. (0.00 ticks)
Sync time (average) = 0.00 sec.
Wait time (average) = 0.00 sec.

Total (root+branch&cut) = 0.01 sec. (0.03 ticks)

Times (seconds):
Input = 0.000782
Solve = 0.018569
Output = 0.000492

CPLEX 12.6.0.0: optimal integer solution; objective 40
2 MIP simplex iterations
0 branch-and-bound nodes
Disabling Presolve

```plaintext
option presolve 0;
option cplex_options
  'timing = 1'
  'mipdisplay=2'
  'mipinterval=1'
  'boundstr=0'
  'dependency=0'
  'coeffreduce=0'
  'presolve=0'
  'cutpass = -1'
  'scale = -1'
  'prerelax = 0'
  'presolvenode = -1';
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boundstr=0</td>
<td>no bound strengthening</td>
</tr>
<tr>
<td>dependency=0</td>
<td>no dependency checker in presolve</td>
</tr>
<tr>
<td>coeffreduce=0</td>
<td>do not do coefficient reduction</td>
</tr>
<tr>
<td>cutpass = -1</td>
<td>stop all cut generation</td>
</tr>
<tr>
<td>scale = -1</td>
<td>do not scale the problem</td>
</tr>
<tr>
<td>prerelax = 0</td>
<td>do not presolve at the initial LPR</td>
</tr>
<tr>
<td>presolvenode=-1</td>
<td>do not presolve at each node</td>
</tr>
</tbody>
</table>

Disabling Primal Heuristics

```plaintext
option cplex_options
  'fpheur = -1'
  'heurfreq = -1'
  'rinsheur = -1';
```

- fpheur: Whether to use the feasibility pump heuristic on MIP problems (find initial feasible):
 -1 = no
 0 = automatic choice (default)

- heurfreq: How often to apply "node heuristics" for MIPS
 -1= no
 20=every twenty nodes

- rinsheur: Relaxation INduced neighborhood Search HEURistic for MIP problems:
 -1 = none
 0 = automatic choice of interval (default)
 n (for n > 0) = every n nodes.
Root relaxation solution time = 0.00 sec. (0.00 ticks)

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Bound</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>41.2500</td>
<td>2</td>
<td>41.2500</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>41.2500</td>
<td>2</td>
<td>41.2500</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elapsed time = 0.01 sec. (0.05 ticks, tree = 0.01 MB)

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Bound</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>41.0000</td>
<td>1</td>
<td>41.2500</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>2</td>
<td>integral</td>
<td>0</td>
<td>39.0000</td>
<td>41.2500</td>
<td>4</td>
<td>5.77%</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40.5556</td>
<td>1</td>
<td>39.0000</td>
<td>41.2500</td>
<td>5</td>
<td>5.77%</td>
</tr>
<tr>
<td>*</td>
<td>4</td>
<td>integral</td>
<td>0</td>
<td>40.0000</td>
<td>41.2500</td>
<td>6</td>
<td>3.12%</td>
</tr>
</tbody>
</table>

Root node processing (before b&c):
Real time = 0.00 sec. (0.01 ticks)
Parallel b&c, 16 threads:
Real time = 0.02 sec. (0.05 ticks)
Sync time (average) = 0.00 sec.
Wait time (average) = 0.00 sec.
Total (root+branch&cut) = 0.02 sec. (0.05 ticks)

Times (seconds):
Input = 0.000825
Solve = 0.091536
Output = 0.000714
Cplex 12.6.0.0: optimal integer solution; objective 40
6 MIP simplex iterations
5 branch-and-bound nodes

Summary: Branch and Bound

• Node Selection
 – DFS together with dual pivots
 – Followed by best-first search (use LP bounds)

• Branching decision
 – Most-fractional, pseudo-cost based, user priorities, strong branching.

• Formulation strength
 – More fathoming by bound, better node selection guidance. Fewer fractional optimal solns

• Cut generation
 – Automatically tighten the formulation as search