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Markov Decision Processes

c hapter 16 introduced Markov chains and their analysis. Most of the chapler was de-
voted to discrete time Markov chains, i.e., Markov chains that are observed only at
discrete points in time {e.g., the end of each day) rather than continuously. Each tirne it is
observed, the Markov chain can be in any one of a number of states. Given the current
state, a (one-step} transition matrix gives the probabilities for what the state will be next
time. Given this transition matrix, Chap. 16 focused on describing the behavior of a
Markov chain, e.g., finding the steady-state probabilities for what state it is in.

Many important systems (e.g., many queueing systems) can be modeled as either a
discrete time or continuous time Markov chain. It is useful to describe the behavior of
such a system (as we did in Chap. 17 for queueing systems) in order to evaluate its per-
formance. However, it may be even more useful to design the operation of the system so
as to optimize its performance (as we did in Sec. 17.10 for queueing systems).

This chapter focuses on how to design the operation of a discrete time Markov chain
$0 as to optimize its performance. Therefore, rather than passively accepting the design
of the Markov chain and the corresponding fixed transition matrix, we now are being
proactive. For each possible state of the Markov chain, we make a decision about which
one of several alternative actions should be taken in that state. The action chosen affects
the transition probabilities as well as both the immediate costs (or rewards) and subse-
quent costs (or rewards) from operating the system. We want to choose the optimal ac-
tions for the respective states when considering both immediate and subsequent costs. The
decision process for doing this is referred to as a Markov decision process.

The first section gives a prototype example of an application of a Markov decision
process. Section 19.2 formulates the basic model for these processes. The next three sec-
tions describe how to solve them.

‘A PROTOTYPE EXAMPLE

A manufacturer has one key machine at the core of one of its production processes. Be-
cause of heavy use, the machine deteriorates rapidly in both quality and output. There-
fore, at the end of each week, a thorough inspection is done that results in classifying the
condition of the machine into one of four possible states:
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State Condition
0 Good as new
1 Operable—minor deterioration
2 Operable—major deterioration
3 Incperable—output of unacceptable quality

After historical data on these inspection results are gathered, statistical analysis is done
on how the state of the machine evolves from month to month. The following matrix shows
the relative frequency (probability) of each possible transition from the state in one month
(a row of the matrix) to the state in the following month (a column of the matrix).

State 0 1 2 3
7 1 1
0 0 8 76 16
3 1 1
! 0 7 B B
1 ]
2 0 0 3 3
3 0 0 0 1

In addition, statistical analysis has found that these transition probabilities are unaffected
by also considering what the states were in prior months. This “lack-of-memory property”
is the Markovian property described in Sec. 16.2. Therefore, for the random variable X,
which is the state of the machine at the end of month ¢, it has been concluded that the
stochastic process {X,, t =0, 1, 2, . . .} is a discrete time Markov chain whose {one-step)
transition matrix 1s just the above matrix.

As the last eniry in this transition matrix indicates, once the machine becomes mmop-
erable (enters state 3), it remains inoperabie. In other words, state 3 is an absorbing state.
Leaving the machine in this state would be intolerable, since this would shut down the
production process, so the machine must be replaced. {Repair is not feasible in this state.)
The new machine then will start off in state 0. _

The replacement process takes 1 week to complete so that production is lost for this
period. The cost of the lost production (lost profit) is $2,000, and the cost of replacing
the machine is $4,000, so the total cost incurred whenever the current machine enters state
3 is $6,000.

Even before the machine reaches state 3, costs may be incurred from the production
of defective items. The expected costs per week from this source are as follows:

State Expected Cost Due to Defective Items, $
0 o
1 1,000
2 3,000

We now have mentioned all the relevant costs associated with one particular mainté:
nance policy (replace the machine when it becomes inoperable but do no maintenance
otherwise). Under this policy, the evolution of the state of the system (the succession of
machines} still is a Markov chain, but now with the following transition matrix:
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State 0 1 2 3
7 1 1
0 —_ - L
0 8 T6 16
1 1 1
! 0 r g g
1 1
2 0 1) > 5
3 1 Q Q 1]

To evaluate this maintenance policy, we should consider both the immediate costs in-
curred over the coming week (just described) and the subsequent costs that result from hay-
ing the system evolve in this way. As introduced in Sec. 16.5, one such widely used measure
of performance for Markov chains is the (long-run) expected average cost per unit time.!

To calculate this measure, we first derive the steady-state probabilities 1y, ), T,
and 75 for this Markov chain by solving the following steady-state equations:

Mg = T3,

™ = %ﬂr@ + %m,

Ty = %71‘0 + %’n’l + %11‘2,
T3 = -1{‘—170 + —é‘ﬂ'l + %fn'z,

—

1=7T0+7T1+7T2+7T3.

(Although this system of equations is small enough to be solved by hand without great dif-
ficulty, the Steady-State Probabilities procedure in the Markov Chains area of your IOR Tu-
torial provides another quick way of obtaining this solution.) The simultaneous solution is

—1 A -2
Ty Ty MmThy MW=y
Hence, the (long-run) expected average cost per week for this maintenance policy is
0 + 1,000, +3.0007; + 6,000m; = 22000 — g1 973,05

However, there also are other maintenance policies that should be considered and com-
pared with this one. For example, perhaps the machine should be replaced before it reaches
state 3. Another alternative is to overhau! the machine at a cost of $2,000. This option is
not feasible in state 3 and does not improve the machine while in state O or 1, so it is of
interest only in state 2. In this state, an overhaul would return the machine to state 1. A
week is required, so another consequence is $2,000 in lost profit from lost production.

In summary, the possible decisions after each inspection are as follows:

Decision Action Relevant States
1 Do nothing 0,1,2
2 Overhaul (return system to state 1) 2
3 Replace (return system to state 0) 1,2, 3

The term long-run indicates that the average should be interpreted as being taken over an extremely long time
sa that the effect of the initial state disappears. As time goes to infinity, Sec. 16.5 discusses the fact that the ac-
tual average cost per unit time essentially always converges to the expected average cost per unit time.
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For easy reference, Table 19.1 also summarizes the relevant costs for each decision for
each state where that decision could be of interest,

What is the optimal maintenance policy? We will be addressing this question to il
lustrate the material in the next four sections.

A MODEL

FOR MARKOV DECISION PROCESSES

The model for the Markov decision processes considered in this chapter can be summa-
rized as follows,

1. The state i of a discrete time Markov chain is observed after each transition (i =0,
1L,..., M. ’

2. After each observation, a decision (action) k is chosen from a set of X possible deci-
sions (k= 1,2, ..., K). (Some of the X decisions may not be relevant for some of
the states.)

3. If decision d; = k is made in state i, an immediate cost is incurred that has an expected
value Cp.

4. The decision d; = k in state i determines what the transizion probabilities’ will be for
the next transition from state /. Denote these transition probabilities by p;(k), forj = 0,
L ..., M

5. A specification of the decisions for the respective states (dy, d, . . . , d,,) prescribes a
policy for the Markov decision process.

6. The objective is to find an optimal policy according to some cost criterion which con-
siders both immediate costs and subsequent costs that result from the futnre evolution
of the process. One common criterion is to minimize the {long-run) expected average
cost per unit time. (An alternative criterion is considered in Sec. 19.5.)

To relate this general description to the prototype example presented in Sec. 19.1, recall
that the Markov chain being observed there represents the state (condition) of a particular
machine. After each inspection of the machine, a choice is made between three possible de-
cisions (do nothing, overhaul, or replace). The resulting immediate expected cost is shown
in the rightmost column of Table 19.1 for each relevant combination of state and decision.
Section 19.1 analyzed one particular policy (dy, 4,, d», dy) = (1, 1, 1, 3), where decision 1
(do nothing) is made in states 0, !, and 2 and decision 3 {replace) is made in state 3. The re-
sulting transition probabilities are shown in the last transition matrix given in Sec. 19.1.

Our general model qualifies to be a Markov decision process because it possesses the
Markovian property that characterizes any Markov process. In particular, given the
current state and decision, any probabilistic statement about the future of the process is
completely unaffected by providing any information about the history of the process. This

"The solution procedures given in the niext two sections also assume that the resulting transition matrix is irreducible.

TABLE 19.1 Cost data for the prototype example

Expected Cost Cost (Lost Total
Due to Producing | Maintenance | Profit) of Lost | Cost per
Decision State ; Defective ltems, § Cost, § Production, § | Week, $
1. Do nothing | 0 0 0 0 0
1 1,000 0 0 1,000
2 3,000 0 0 3,000
2. Overhaut 2 0 2,000 2,000 4,000
3. Replace 1,23 0 4,000 2,000 6,000
R
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Markovian property holds here since (1) we are dealing with a Markov chain, (2) the new
transition probabilities depend on only the current state and decision, and (3) the imme-
diate expected cost also depends on only the current state and decision.

Our description of a policy implies two convenient (but unnecessary) properties that
we will assume throughout the chapter (with one exception). One property is that a pol-
icy is stationary; i.e., whenever the system is in state i, the rule for making the decision
always is the same regardless of the value of the current time r. The second property is
that a policy is deterministic; i.e., whenever the system is in state i, the rule for making
the decision definitety chooses one particular decision. (Because of the nature of the al-
gorithm involved, the next section considers randomized policies instead, where a proba-
bility distribution is used for the decision to be made.)

Using this general framework, we now return to the prototype exampie and find the
optimal policy by enumerating and comparing all the relevant policies. In doing this, we
will let R denote a specific policy and di(R) denote the corresponding decision to be made
in state i, where decisions 1, 2, and 3 are described at the end of the preceding section.
Since one or mare of these three decisions are the only ones that would be considered in
any given state, the only possible values of d{R} are 1, 2, or 3 for any state i.

Solving the Prototype Example by Exhaustive Enumeration

The relevant policies for the prototype example are these:

Policy Verbal Description do(R) di(R) d;(R) d;(R)
Ra Replace in state 3 1 1 1 3
Ry Repiace in state 3, overhaul in state 2 i 1 2 3
R. Repiace in states 2 and 3 1 1 3 3
Ry Replace in states 1, 2, and 3 1 3 3 3

Each policy results in a different transition matrix, as shown below.

R, R,
te 1 2 3 State 1] 1 2 3
7 1 1 7 1 1
K3 16 T6 0 0 g 16 76
3 1 1 3 1 1
P K} B 1 0 ry B B
0 1 1 2 0 1 0 0
2 2 3 1 4] 0 0
0 0 0
R, R,
te 1 2 3 State 0 1 2 3
7 1 1 7 1 1
B 16 16 0 0 8 6 16
3 1 1 1 i 0 0 0
4 8 8 2 1 0 [¢] 0
0 0 0] 3 1 4] e} 0
[0} 0 0
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From the rightmost column of Table 19.1, the values of C. are as follows:

Cu (in Thousands of Dollars)

State § ecision ki 1 2 3

WN=o
N
ooonooen |

As indicated in Sec. 16.5, the (long-run) expected average cost per unit time E{C) then
can be calcnlated from the expression

M
E(C)=) Cum,
i=0

where k = di(R) for each i and (g, 7, . . ., M) represents the steady-state distribution
of the state of the system under the policy R being evaluated. After (g, my, . . ., ) are
solved for under each of the four policies (as can be done with your JOR Tutonal), the
calculation of E{C) is as summarized here:

Policy | (mo, ma, s m3) E(C), in Thousands of Dollars
R (] ?) 1200 + 71) + 23) + 28] = 22 = $1,923
Ry ( - mzz—) $12(0) + 15(1) + 2(4) + 28] = 22 = $1,667 « Minimurn
3 (1 1l %) SE200) + 7() +1(6) + 160 2 =s51,727
Ry (1 —12—) —SE16(0) + 14(6) + 1(6) + 1(6)} = 28 = 53,000

Thus, the optimal policy is Ry; that is, replace the machine when it is found to be in
state 3, and overhaul the machine when it is found to be in state 2. The resulting (Jong-
run) expected average cost per week is $1,667.

If you would like to go through another small example, one is provided in the Worked
Examples section of the CD-ROM.

Using exhaustive enumeration to find the optimal policy is appropriate for such tiny
examples, where there are so few relevant policies. However, many applications have s0
many policies that this approach would be completely infeasible. For such cases, algo-
rithms that can efficiently find an optimal policy are needed. The next three sections con-
sider such algorithms.

9.3 LINEAR PROGRAMMING AND OPTIMAL POLICIES

Section 19.2 described the main kind of policy (called a stationary, deterministic policy)
that is used by Markov decision processes. We saw that any such policy R can be viewed
as a rule that prescribes decision d{R) whenever the system is in state 7, for each i = 0,
1, ..., M. Thus, R is characterized by the values

{do(R), di(R), . . ., di(R)).
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Equivalently, R can be characterized by assigning values Dy, = 0 or 1 in the matrix

Decision k
] 2 wan K

01Dg Dga - Dy

1| D D - D
State { H 2 lf( s

M DM] DM2 DMK

whereeach Dy, (i=0,1,... , Mand k= 1,2,..., K} is defined as
1 if decision £ is to be made in state i
D[k _ .
0 otherwise.

Therefore, each row in the matrix must contain a single 1 with the rest of the elements Os.
For example, the optimal policy R, for the prototype example is characterized by the matrix

Decision &
1 2 3
0i{1 0 0
State ¢ Hir oo :
210 1 ¢
310 0 1

i.e., do nothing (decision 1} when the machine is in state 0 or 1, overhaul (decision 2) in
state 2, and replace the machine (decision 3) when it is in state 3.

Randomized Policies

Introducing D, provides motivation for a linear programming formulation. It is hoped
that the expected cost of a policy can be expressed as a linear function of Dy, or a related
variable, subject to linear constraints. Unfortunately, the D values are integers (Q or 1),
and continuous variables are required for a linear programming formulation. This re-
quirement can be handied by expanding the interpretation of a policy. The previous def-
inition calls for making the same decision every time the system is in state {. The new in-
terpretation of a policy will call for determining a probability distribution for the decision
to be made when the system is in state /.

With this new interpretation, the Dy now need to be redefined as

Dy = P{decision = k|state = i}.
In other words, given that the system is in state i, variable Dy, is the probability of choos-
ing decision k as the decision to be made. Therefore, (D;, Dy, . . ., D) is the proba-
bility distribution for the decision to be made in state I.

This kind of policy using probability distributions is called a randomized policy,
whereas the policy calling for Dy = Q or 1 is a deterministic policy. Randomized policies
can again be characterized by the matrix

Decision k
1 2 K
0Dy Dy - Do
11D D - D
State i 11 12 K )
M| Dyt Dppp Dy

where each row sums to 1, and now
=Dy =1
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To illustrate, consider a randomized polic

y for the prototype example given by the
matrix

Decision %

3

This policy calls for always making decision 1 (do nothing) when the machine is in state 0,
If it is found to be in state 1, it is left as is with probability 3 and replaced with proba-
bility %, $0 a coin can be flipped to make the choice. If it is found to be in state 2, it js
left as is with probability I, overhauled with probability ;, and replaced with probability 1.
Presumably, a random device with these probabilities (possibly a table of random num-
bers) can be used to make the actual decision. Finally, if the machine is found to be in
state 3, it always is overhauled.

By allowing randomized policies, so that the Dy, are continuous variables instead of

integer variables, it now is possible to formulate a linear programming model for finding
an optimal policy.

A Linear Programming Formulation

The convenient decision variables (denoted here by yu) for a linear programming modet
are defined as follows. For each i = 0,1,....Mandk=1,2,... » K, let y,;. be the steady-
state unconditional probability that the system is in state i and decision & is made; ie.,

Yir = P{state = { and decision = k}.

Each y,; is closely related to the corresponding D, since, from the rules of condiﬁon;gll
probability, B

Vi = WDy,

where 71; is the steady-state probability that the Markov chain is in state 7. Furthermore,

K
= z Yits
k=1
80 that
Dy = Ve _ Y

wy K ’
z Y
£=1

There exist three sets of constraints on Vies

M M K
I.Zm:] so that ZZy,—k:].
i= i=0k=1
2. From results on steady-state probabilities (see Sec. 16.5),"
M

;= Z Tipij

i=

"The argument £ is introduced in (k) 10 indicate that

the appropriate transition probability depends upo
deciston £,
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s0 that
K M K
Z Yie = Z Z yi.g-[),'j(k), fOrj = 0, I ... , M.
£=1 i=04=1
3 oyu=0, fori=0,1,... , Mandk=1,2,... K

The long-run expected average cost per unit time is given by

M K MK
ECY=) > mCyDy= > > Civie

i=0k=1 =0 k=1
Hence, the linear programming model is to choose the Yir 50 as to

M

K
Minimize ~ Z=) > Cuvas
=0 =1

subject to the constraints

M K
M > D =1

=0 k=1
K M K

QY D w0 D a0 =0,  forj=0,1,.... M
k=1 i=0 k=1

3 yaz=0, fori=0,1,... M;k=1,2,... K.

Thus, this model has M + 2 functional consiraints and KM + 1) decision variables.
[Actually, (2) provides one redundant constraint, so any one of these M + 1 constraints
can be deleted. ]

Because this is a linear programming model, it can be solved by the simplex method.
Once the yy values are obtained, each Dy, is found from

Dy = Kyilc .
Z Yik
E=1

The optimal solution obtained by the simplex method has some interesting proper-
ties. It will contain M + 1 basic variables Yu = 0. 1t can be shown that y;, > ( for at least
onek=1,2,.. ., K foreachi=0,1,..., M. Therefore, it follows that y;, > 0 for only
one kforeachi=0,1,..., M Consequently, each D, = 0 or 1.

The key conclusion is that the optimal policy found by the simplex method is deter-
ministic rather than randomized. Thus, allowing policies to be randomized does not help at
all in improving the final policy. However, it serves an extremely useful role in this formu-
lation by converting integer variables (the Dy) to continuous variables so that linear pro-
gramming (LP) can be used. (The analogy in integer programming is to use the LP relax-
ation so that the simplex method can be applied and then to have the integer solutions property
hold so that the optimal soluticn for the LP refaxation turns out to be integer anyway.)

Solving the Prototype Example by Linear Programming

Refer to the prototype example of Sec. 19.1. The first two columns of Table 19.1 give the
relevant combinations of states and decisions. Therefore, the decision variables that need
to be included in the model are yo;, y,1, 13, ¥21. Y22, Y23, and ya3. (The general expres-
sions given above for the model include Yu for irrelevant combinations of states and
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decisions here, so these y, = 0 in an optimal solution, and they might as well be deleted
at the outset.) The rightmost column of Table 19.1 provides the coefficients of these vari-
ables in the objective function, The transition probabilities p,(k) for each relevant com.
bination of state i and decision & also are spelled out in Sec. 19.1.

The resulting linear programming model is

Minimize Z = 1,000y, + 6,000y,3 + 3,000y,; + 4,000y, + 6,000y,
+ 6,000_))33,

subject to
Yor tyn ¥z yay oyt yas Fyss =1
o1 =~ (13 + yo3 + ¥33) =0

7 3
Yint oy (g)kn + pegt + )’22) =0
Py = [y + 5+ 1 ) 2o
Y21 T Y22 T Yas 16)’01 8)’11 2y21 =

1 1 1
¥33 — ('lgﬁu + gt be) =0
and
3.11 Yir = 0.

Applying the simplex method, we obtain the optimal solution

2 5 2 2
Yo = Sy O, vz = (7, 0), (Y21, Y22, ¥23) = (0, TR 0), Y3 = o
0
Doy =1, (D11, Dy3) = (1, 0), (D21, Do, Dy3) = (0, 1, 0), Dy =1

This policy cails for leaving the machine as is (decision 1) when it is in state 0 or 1, over-
hauling it (decision 2) when it is in state 2, and replacing it (decision 3) when it is in state
3. This is the same optimal policy found by exhaustive enumeration at the end of Sec. 19.2.

The Worked Examples section of the CD-ROM provides another example of applying
linear programming to obtain an optimal policy for a Markov decision process.

4 POLICY IMPROVEMENT ALGORITHM FOR

FINDING OPTIMAL POLICIES

You now have seen two methods for deriving an optimal policy for a Markov decision
process: exhaustive enumeration and linear programming. Exhaustive enumeration is use-
ful because it is both quick and stratghtforward for very smatl problems, Linear pro-
gramming can be used to solve vastly larger problems, and software packages for the sim-
plex method are very widely available.

We now present a third popular method, namely, a policy improvement algorithm.
The key advantage of this method is that it tends to be very efficient, because it usvally
reaches an optimal policy in a relatively small number of iterations (far fewer than for the
simplex method with a linear programming formulation).

By following the model of Sec. 19.2 and as a joint result of the current state i of the
system and the decision d;(R) = k when operating under policy R, two things occur. A%
(expected) cost Cy is incurred that depends upon only the observed state of the system
and the decision made. The system moves to state j at the next observed time period, with
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transition probability given by py(k). If, in fact, state j influences the cost that has been
incurred, then Cy, is calculated as follows. Let

g;(k) = expected cost incurred when the system is in state t, decision k is made,
and the system evolves to state / at the next observed time period.

Then

M
Co =D, gylkdpy k).
i=0

Preliminaries

Referring to the description and notation for Markov decision processes given at the be-
ginning of Sec. 19.2, we can show that, for any given policy R, there exist values g(R),
vo(R), vi(R), . . ., vp(R) that satisfy

A
gR) +v(Ry = Cy + > p) v(R), fori=0,1,2,..., M.
j=0

We now shall give a heuristic justification of these relationships and an interpretation for
these values.

Denote by vi(R) the total expected cost of a system starting in state { (beginning the
first observed time period) and evolving for » time periods. Then v;/(R) has two compo-

M
nents: Cy, the cost incurred during the first observed time period, and Z piflk) vj“l(R),
j=0

the total expected cost of the system evolving over the remaining n — 1 time periods. This

- gives the recursive equation

M
VIR) = Ca+ > pyl) vi"YR), fori=0,1,2, ... .M,
j=0

where v}(R) = C, for all i.
It will be useful to explore the behavior of v(R) as n grows large. Recall that the (long-
run) expected average cost per unit time following any policy R can be expressed as
M

gR) = Z 7 Ci

i=0

which is independent of the starting state ;. Hence, vi(R) behaves approximately as 7 g(R)
for large n. In fact, if we neglect small fluctuations, vi'(R) can be expressed as the sum of
two components

VI(R) = n g(R) + vi(R),

where the first component is independent of the initial state and the second is dependent
upon the initial state. Thus, v;(R) can be interpreted as the effect on the total expected cost
due to starting in state i. Consequently,

ViR) — vi(R) = vi(R) — vi(R),

so that v;(R) — v;(R) is a measure of the effect of starting in state i rather than state J-
Letting n grow large, we now can substitute v(R) = n g(R) + v{R) and v}’_l(R) =
(n — 1)g(R) + v{(R) into the recursive equation. This leads to the system of equations
given in the opening paragraph of this subsection.
Note that this systemn has M + 1 equations with M + 2 unknowns, so that one of these
variables may be chosen arbitrarily. By convention, v,(R) will be chosen equal to zero.
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Therefore, by solving the system of linear equations, we can obtain g(R), the (long-run)
expected average cost per unit time when policy R is followed. In principle, all policies
can be enumerated and that policy which minimizes g(R) can be found. However, even
for a moderate number of states and decisions, this technique is cumbersome. Fortunately,
there exists an algorithm that can be used to evaluate policies and find the optimal one
without complete enumeration, as described next.

The Policy Improvement Algorithm

The algorithm begins by choosing an arbitrary policy R,. It then solves the system of
equations to find the values of g(R)), vo(R), vi(R), . . ., Var—1(R) [with vy (R) = O], This
step is called value determination. A better policy, denoted by R,, is then constructed,
This step is called policy improvement. These two steps constitute an iteration of the al-
gorithm. Using the new policy R,, we perform another iteration. These iterations continue
until two successive iterations lead to identical policies, which signifies that the optimal
policy has been obtained. The details are outlined below.

Summary of the Policy Improvement Algorithm

Initialization: Choose an arbitrary initial trial policy R,. Set n = 1.

Iieration n:

Step 1: Value determination: For policy R, use Pifl), Cy, and vp{R,) =0 to0
solve the system of M -+ 1 eguations

M
BR = Cu+ > py) viR) — vi(R),  fori=0,1,... M,
j=0

for all M + 1 unknown values of g(R,), vo(R,), vilR,), - L, vy (R,

Step 2: Policy improvement: Using the current values of v;(R,,} computed for pol-
icy R,, find the alternative policy R,.; such that, for each state i, diR,+1) =k
is the decision that minimizes

M
Ca+ > pyR) vi(R,) ~ vi(R.)
i=0

i.e., for each state i,

and then set di(R,.+,) equal to the minimizing value of k. This procedure defines
a new policy R, ;.

Optimality test: The current policy R, is optimal if this policy is identical to
policy R,,. If it is, stop. Otherwise, reset n = n + I and perform another iteration.

Two key properties of this algorithm are

1. g(Rn-Fl)Eg(Rn), forfl= 1,2,... .
2. The algorithm terminates with an optimal policy in a finite number of itera-
tions."

]

"This termination is guaranteed under the assumptions of the model given in Sec. 19.2, including particularly
the {implicit} assumptions of a finite number of states (M + ) and a finite number of decisions (K), but not
necessarily for more general models. See R. Howard, Dynamic Programming and Markov Processes, MIT.
Press, Cambridge, MA, 1960. Also sce pp. 12911293 in A. E Veinott, Ir., “On Finding Optimal Policies in Dis-
crete Dynamic Programming with No Discounting.” Annals of Mathematical Statistics, ¥7: 12841294, 1966.
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Solving the Prototype Example by the Policy
Improvement Algorithm

Referring to the prototype example presented in Sec. 19.1, we outline the application of
the algorithm next.

Initialization. For the initial trial policy Ry, we arbitrarily choose the policy that calls
tor replacement of the machine (decision 3) when it is found to be in state 3, but doing
nothing (decision 1) in other states. This policy, its transition matrix, and its costs are sum-
marized below.

Policy ’, Transition matrix "~ Costs
State Decision State . 1] 1 2 3 State Ce
0 1 7 1 1 0 0
1 1 0 0 B 76 16 1 1,000
2 1 3 1 1 2 3,000
3 3 1 0 T r3 3 3 6,000
1 1
2 0 0 3 7
3 1 0 0 o

Iteration 1. With this policy, the value determination step requires solving the follow-
ing four equations simultaneously for g(R,), vo(R,), vi(R,), and vo(R;) [with v5(R)) = 0].

7 [
gR) = + gV:(RI) + T6V2(R1) — vplRy).
8(R:) = 1,000 + 2R +gnaR) — vi(R),
1
£(Ry) = 3,000 + EVZ(RI) — va(Ry).

g(Rl) - 6,000 -+ VO(RI)'
The simultaneous solution is

s®) = 0% = 1023

vo(Ry) = =330 — —q 077
Ry = 20~ —a615
va(R)) = ZSigOO = 2,154

Step 2 (policy improvement) can now be applied. We want to find an improved pol-
icy R> such that decision £ in state { minimizes the corresponding expression below.

State 0: Cor — pook)4,077) — por(k)(2,615) + poa(k)(2,154) + 4,077
State 1: Cr — pigtk)4,077) — pr(R)2,615) + po(k)(2,154) + 2,615
State 2: Cop — paolkX4,077) — p2i(K)(2.615) + par(k)(2,154) — 2,154
State 3: Ca — Pag()4,077) — pa (K)2,615) + pa(k)(2,154).

Actually, in state 0, the only decision allowed is decision I (do nothing), so no calcu-
lations are needed. Similarly, we know that decision 3 (replace) must be made in state 3.
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Thus, only states 1 and 2 require calculation of the values of these expressions for alter-
native decisions.

For state 1, the possible decisions are 1 and 3. For each one, we show below the cor-
responding Cyy, the pyfk), and the resulting value of the expression.

State 1
Value of
Decision Cix Prolk) P1ilk) p2(k) Pz(k) Expression
i 1,000 0 3. 1 i3 1,923  «— Minimum
‘ 4 8 8 '
3 6,000 1 0 0 0 4,538

Since decision 1 minimizes the expression, it is chosen as the decision to be made in state
1 for policy R, (just as for policy R;).
The corresponding results for state 2 are shown below for its three possible decisions.

State 2
Value of
Decision Cop P2olk) P21{k) P22(k) P2s(k) Expression
1 3,000 0 0 1 I 1,923
5 3 5 P
2 4,000 0 1 0 0 -769  « Minimum
3 6,000 i 0 0 0 -231

Therefore, decision 2 is chosen as the decision to be made in state 2 for policy R,. Note
that this is a change from policy R;.
We summarize our new policy, its transition matrix, and its costs below.

Policy R; Transition matrix Costs
State Decision State 0 1 2 3 State G
0 1 7 1 1 0 Y
1 1 0 0 g 16 16 1 1,000
2 2 3 1 1 2 4,000
3 3 1 0 a 3 B 3 6,000
2 0 1 0 0
3 1 4] 0] 0

Since this policy is not identical to policy R, the optimality test says to perform another
iteration.

lteration 2. For step | (value determination), the equations to be solved for this policy
are shown below.

7
8(R) = L R + TevaR) — volRo). ,
£(Rs) = 1,000 IR+ nlRy) = iRy
g(R2) = 4,000 +  wilRa) = va(Rz).

g(R;_\) = 6,000 + V()(R2).
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The simultaneous solution is

2(R,) = ;g_oo_ = 1.667
vo(Ry) = ————13’300 = 4333
vi(Ry) = —3,000

va(Ry) = ——_2’200 = —667.

Step 2 (policy improvement) can now be applied. For the two states with more than
one possible decision, the expressions to be minimized are

State 1; Cix — p1o(k)(4,333) — p,1(k)(3,000) — P1afk)667) + 3,000

State 2: Car = p20(k}(4,333) — p,,(k)(3,000) — Paalk)667) + 667,

The first iteration provides the necessary data (the transition probabilities and Cy) re-

quired for determining the new policy, except for the values of each of these expressions
for each of the possible decisions. These values are

Decision Value for State 1 Value for State 2
1 1,667 ' 3,333
2 — 1,667
3 4,667 2,334
Since decision | minimizes the expression for state 1 and decision 2 minimizes the ex- ;
pression for state 2, our next trial policy R; is
Policy R
State Decision ' 1
0 1
1 1
2 2
0
1,000 3 3
1,000
5000 ; Note that policy R, is identical to policy R,. Therefore, the optimality test indicates
that this policy is optimal, so the algorithm is finished.
Another example illustrating the application of this algorithm is included in your OR #
: Tutor. The Worked Examples section of the CD-ROM provides an additional example as o
other well. The IOR Tutorial also includes an interactive procedure for efficiently learning and ho
applying the algorithm.
yolicy |

_DISCOUNTED COST CRITERION

Throughout this chapter, we have measured policies on the basis of their (long-run) ex-

pected average cost per unit time. We now turn to an alternative measure of performance, :

namely, the expected total discounted cost.
As first introduced in Sec, 18.2, this measure uses a discount factor o, where

0 < @ < 1. The discount factor « can be interpreted as equal to 1/(1 + i), where i is the
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current interest rate per period. Thus, « is the present value of one unit of cost one pe-
riod in the future. Similarly, «™ is the present value of one unit of cost m periods in the
future.

This discounted cost criterion becomes preferable to the average cost criterion when
the time periods for the Markov chain are sufficiently long that the time value of money
should be taken into account in adding costs in future periods to the cost in the current
period. Another advantage is that the discounted cost criterion can readily be adapted to
dealing with a finite-period Markov decision process where the Markov chain will ter-
minate after a certain number of periods,

Both the policy improvement technique and the Iinear programming approach still
can be applied here with relatively minor adjustments from the average cost case, as we
describe next. Then we will present another technique, called the method of successive
approximations, for quickly approximating an optimal policy.

A Policy Improvement Algorithm

To derive the expressions needed for the value determination and policy improvement
steps of the algorithm, we now adopt the viewpoint of probabilistic dynamic program-
ming (as described in Sec. 10.4). In particular, for each state ; (i = 0, 1, . . . , M) of a
Markov decision process operating under policy R, let VI*(R) be the expected total dis-
counted cost when the process starts in state i (beginning the first observed time period)
and evolves for n time periods. Then V7(R) has two components: Cp, the cost incurred

M
during the first observed time period, and o Z Py (R), the expected total dis-

j=0
counted cost of the process evolving over the remaining n — 1 time periods. For each
i=0,1,...,M, this yields the recursive equation

M
VIR) = Cy + @ 3 py()VI(R),
j=0
with VI{R} = C,, which closely resembles the recursive relationships of probabilistic
dynamic programming found in Sec. 10.4.

As n approaches infinity, this recursive equation converges to

M
VAR) = Cy + a > py(MVAR), fori=0,1,..., M,
j=0
where V,(R) can now be interpreted as the expected total discounted cost when the process
starts in state { and continues indefinitely. There are M + 1 equations and M + 1 un-
knowns, so the simultaneous solution of this system of equations yields the V,(R).

To illustrate, consider again the prototype example of Sec. 19.1. Under the average
cost criterion, we found in Secs. 192, 19.3, and 19.4 that the optimal policy is to do noth-
ing in states 0 and 1, overhaul in state 2, and replace in state 3. Under the discounted cost
criterion, with a = 0.9, this same policy gives the following system of equations:

Vo(R) = + 0.9[ %v, (R) + Tlévg(m + %Vg(k)]

Vi (R) = 1,060 + 0.9[ %V,(R) + %VQ(R) + %V;(R)]

Va(R) = 4,000 + 0.9{ Vi(R)]
V3(R) = 6,000 + 0.9]Vy(R)].
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The simultaneous soluticn is

Vo(R) = 14,949
; : Vi(R) = 16,262 |
Vy(R) = 18,636 5
Va(R) = 19,454,

Thus, assuming that the system starts in state 0, the expected total discounted cost is
$14,949.

This system of equations provides the expressions needed for a policy improvement
algorithm. After summarizing this algorithm in general terms, we shall use it to check
whether this particular policy still is optimal under the discounted cost criterion.

Summary of the Policy Improvement Algorithm (Discounted Cost Criterion)

Initialization: Choose an arbitrary initial teial policy Ry. Setn = 1.

Iteration n:

Step 1: Value determination: For policy R, use p;(k) and Cy to solve the sys-
tem of M + 1 equations

M
ViR = Cu + a > pl)Vi(R,),  fori=0,1,..., M,
2

J

for all M + 1 unknown values of Vo(R,), Vi(R.), . . ., VadR,).

Step 2: Policy improvement: Using the current values of the V(R,), find the al-
ternative policy R,,.. such that, for each state i, d(R, )} = k is the decision that
minimizes

.
Ca+a > pil)VAR,)
=0

ie., for each staie i,

M
Minimize [C,—k +tay pij(k)‘/j(Rn):Iv
k=1,2...., K =

and then set 4R, ) equal to the minimizing value of & This procedure defines
a new policy R,

Optimality test: The cumment policy R, is optimal if this policy is identical to
policy R, If it is, stop. Otherwise, reset 7 = 1 + 1 and perform another iteration.

Three key properties of this algorithm are as follows:

L. V{R,+1) = V{(R,), fori=0,1,.... Mandn=1,2,....

2. The algorithm terminates with an optimal policy in a finite number of iterations.

3. The algorithm is valid without the assumption (used for the average cost case)
that the Markov chain associated with every transition matrix is irreducible. ot

Your IOR Tutorial includes an interactive procedure for applying this algorithm.

Solving the Prototype Example by This Policy Improvement Algorithm. We
now pick up the prototype example where we left it before summarizing the algorithm.
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We already have selected the optimal policy under the average cost criterion to be our
inittal trial policy R;. This policy, its transition matrix, and its costs are summarized below.

Policy R, Transition matrix Costs
State Decision State L] 1 2 3 State Cy.
1 1 8 16 16 1 1,000
2 2 3 1 1 2 4,000
3 3 ! 0 ry ) B 3 6,000
2 0 1 0 0
3 1 0 0 G

We also have already done step 1 (value determination) of iteration 1. This transi-
tion matrix and these costs led to the system of equations used to find Vo(R1) = 14,949,
Vi{R) = 16,262, V,(R)) = 18,636, and V4(R;) = 19,454,

To start step 2 (policy improvement), we only need to construct the expression to be
minimized for the two states (1 and 2) with a choice of decisions.

State 11 Cyy + 0.9 pyo(k)(14,949) + py1(k)(16,262) + pra(k)(18,636)
+ p13()(19,454))

State 2:  Cyy + 0.9 pyolk)(14,949) + pay (k)(16,262) + por(k)(18,636)
+ pas(k)(19,454)].

For each of these states and their possible deciéions, we show below the corresponding
Ciy, the p;(k), and the resulting value of the expression.

State 1

Decision Cire Prolk) | pradk) | piak) | pra(l) | Value of Expression

3 1 1 -
1 1,000 0 T 2 g 16,262 «— Minimum
3 6,000 1 0 0 o 19,454
State 2

Decision Cop P2o(k) | P22(RY | p22(k) | pza(k) | Value of Expression

1 1
1 3,000 0 0 5 > 20,140
2 4,000 0 1 0 0 18,636 — Minimum
3 6,000 1 0 0 0 19,454 o

Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the éx-
pression for state 2, our next trial policy (R,) is as follows:

Policy R,

State Decision

¢

1
T 1
2 2
3 3
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Since this policy is identical to policy R, the optimality test indicates that this pol-
icy is optimal. Thus, the optimal policy under the average cost criterion also is optimal
under the discounted cost criterion in this case. (This often occurs, but not always.)

Linear Programming Formulation

The linear programming formulation for the discounted cost case is similar to that for the
average cost case given in Sec. 19.3. However, we no longer need the first constraint given
in Sec. 19.3; but the other functional constraints do need to include the discount factor .
The other difference is that the model now contains constants 8, for j =0, 1, ..., M.
These constants must satisfy the conditions

s

]
[=]

Bi=1, B;>0 forj=0,1,...,M,

J

but otherwise they can be chosen arbitrarily without affecting the optimal policy obtained
from the model.

The resulting model is to choose the values of the continuous decision variables y,,
S0 as to

X

™Mx

Minimize Z= CaYito
1

=0k

It
I

subject to the constraints

K M K
O Dyr—a) ) yapfk) =B,  forj=0,1,...,M,
k=1 i=0 k=1

(2) ¥ = 0, fori=0,1,..., Mk=1,2,...,K

Once the simplex meihod is used to obtain an optimal solution for this model, the
corresponding optimal policy then is defined by

Dy = P{decision = k|state = i} = —2%—

Z Yir
£=1

The y; now can be interpreted as the discounted expected time of being in state { and
making decision &, when the probability distribution of the initial state (when observa-
tions begin) is P{Xo =j} =fB;forj=0, 1, ..., M. In other words, if

7§ = P{at time p, state = { and decision = £},
then

Ya = o+ azh + a’z% + o+ e

With the interpretation of the 8;as initial state probabilities (with each probability greater
than zero), Z can be interpreted as the corresponding expected total discounted cost. Thus,
the choice of §; affects the optimal value of Z (but not the resulting optimal policy).

It again can be shown that the optimal policy obtained from solving the linear pro-
gramuning model is deterministic; that is, Dy = 0 or 1. Furthermore, this technique is valid
without the assumption {used for the average cost case) that the Markov chain associated
with every transition matrix is irreducible. '
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The reason that this approach is attractive is that we already have a quick method of
finding an optimal policy when the process has only n periods to go, namely, probabilis-
tic dynamic programming as described in Sec. 10.4.

In particular, fori =0, 1, ..., M, let

Vi' = expected total discounted cost of following an optimal policy, given that
process starts in state { and has only n periods to go.'

By the principle of optimality for dynamic programming (see Sec. 10.2), the V" are ob-
tained from the recursive relationship

M
Vi = mﬂin {C,—k + ;)pfj(k)vj”_l}, fori=0,1,..., M

E

The minimizing value of k provides the optimal decision to make in the first period when
the process starts in state 7.
To get started, with n = 1, all the V,-0 = ( so that

v :m,fn{cik}, fori=0,1,..., M.

Although the method of successive approximations may not lead to an optimal policy
for the infinite-period problem after only a few iterations, it has one distinct advantage over
the policy improvement and linear programming techniques. It never requires solving a
system of simultaneous equations, so each iteration can be performed simply and quickly.

Furthermore, if the Markov decision process actually does have just n periods to go,
n iterations of this method definitely will lead to an optimal policy. (For an n-period prob-
lem, it is permissible to set & = 1, that is, no discounting, in which case the objective is
to minimize the expected total cost over n periods.)

Your IOR Tutorial includes an interactive procedure to help guide you to use this
method efficiently.

Solving the Prototype Example by the Method of Successive Approximations
We again use & = 0.9. Refer to the rightmost column of Table 19.1 at the end of Sec. 19.1
for the values of Cy. Also note in the first two columns of this table that the only feasi-
ble decisions k for each state fare k = 1 fori =0, k= lor3 fori = 1,k=1,2 0r3 for
i=2, and k=3 fori=3.

For the first iteration (n = 1), the value obtained for each V! is shown below, along
with the minimizing value of & (given in parentheses).

14 = min (Cy} =0 *k=1)

Vi = kllgill'ls {Cu) = 1,000 k=1)

Vi= min {Cu}=3000 (k=1)
k=123

vi= g}'g {Cs:} = 6,000 (k=73)

Thus, the first approximation calls for making decision 1 (do nothing) when the system is
in state 0, 1, or 2. When the system is in state 3, deciston 3 {replace the machine) is made.

'Since we want to allow 1 to grow indefinitely, we are letting » be the number of periods to go, instead of the
number of periods from the beginning (as in Chap. 10).
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The second iteration leads to

Vi=0+ 0.9[%(1,000) + 1]—6(3,000) + 11—6(6,000)] 1294 (k=1)

V2 = min [1,000 + 0.9[%(1,000) + %(3,000) T %{6,000)],
6,000 + 0.9[1(0)}] ~2688  (k=1)
V2 = min {3,000 + 0.9[%(3,000) + %(6,000)],

4,000 + 0.9[1(1,000)], 6,000 + 0.9[1(0)]} =4900 (k=12)
vi= 6,000 + 0.9[1(0)} =6,000  (k=3).

where the min operator has been deleted from the first and fourth expressions because
only one alternative for the decision is available. Thus, the second approximation calls for
leaving the machine as is when it is in state  or 1, overhauling when it is in state 2, and
replacing the machine when it is in state 3. Note that this policy is the optimal one for
the infinite-period problem, as found earlier in this section by both the policy improve-
ment algorithm and linear programming. However, the V;? (the expected total discounted
cost when starting in state ¢ for the two-period problem) are not yet close to the V; (the
corresponding cost for the infinite-period problem).
The third iteration leads to

Vi=0+ 0.9[%(2,688) + %(4,900) n %‘{6,000)] —2730 (k=1
V3 = min {1,000 +09 %(2,688) + %(4,900) + %(6,000)],
L

6,000 + 0.9[1(1,294)]} = 4,041 k=1)

V3 = min {3,000 +09 %(4,900) + %(6,000}],

4,000 + 0.9{1(2,688)], 6,000 + 0.9[1(1,294)]} =6,419 (k=12)
V= 6,000 + 0.9[1(1,294)] = 7,165 (k=3

Again the optimal policy for the infinite-period problem is obtained, and the costs are get-
ting closer to those for that problem. This procedure can be continued, and V3, VT, V2,
and V3 will converge to 14,949, 16,262, 18,636, and 19,454, respectively.

Note that termination of the method of successive approximations after the second it-
eration would have resulted in an optimal policy for the infinite-period problem, although
there is no way to know this fact without solving the problem by other methods.

As indicated earlier, the method of successive approximations definitely obtains an
optimal policy for an r-period problem after n iterations. For this example, the first, sec-
ond, and third iterations have identified the optimal immediate decision for each state if
the remaining number of periods is one, two, and three, respectively.

CONCLUSIONS

Markov decision processes provide a powerful tool for optimizing the performance of sto-
chastic processes that can be modeled as a discrete time Markov chain. Applications arse
in a variety of areas, such as health care, highway and bridge maintenance, inventory

B sl
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management, machine maintenance, cash-flow management, control of water reservoirs,
forest management, control of queueing systems, and operation of communication net-
=1 works, Selected References 10 and 11 provide interesting early surveys of applications.
Selected Reference 9 gives an update on one that won a prestigious prize, and Selected
Reference 4 describes another award-winning application. Selected References 3 and 7
include more recent information on applications.
= 1) . The two primary measures of performance used are the: (long-run) expected average
; cost per unit time and the expected total discounted cost. The latter measure requires de-
termination of the appropriate value of a discount factor, but this measure is useful when
it is important to take into account the time value of money.

=7 The two most important methods for deriving optimal policies for Markov decision
processes are policy improvement algorithms and linear programming. Under the dis-
= 3). counted cost criterion, the method of successive approximations provides a quick way of
cause approximating an optimal policy.
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Interactive Procedures in I0R Tutorial:

Enter Markov Decision Model

Interactive Policy Improvement Algorithm—Average Cost
Interactive Policy Ymprovement Algorithm—Discounted Cost
Interactive Method of Successive Approximations

Automatic Procedures in 10R Tutorial (Markov Chains Area):

Enter Transition Mattix
Steady-State Probabilities

“Ch. 19—Markov Decision Proc” Files for Solving the Linear
Programming Formulations:

Excel Files
LINGO/LINDO File

Glossary for Chapter 19

See Appendix 1 for documentation of the software.

il PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed on p. 925 may be helpful,

I: We suggest that you use the corresponding interactive procedure
listed above (the printout records your work).

A: The automatic procedures listed above can be helpful.

C. Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve your linear
programming formulation.

An asterisk on the problem number indicates that at least a partia}
answer is given in the back of the book.

19.2-1.* During any period, a potential customer arrives at a cer-
tain facility with probability 3. If there are already two people at
the facility (including the one being served), the potential customer
leaves the facility immediately and never retums. However, if there
is one person or less, he enters the facility and becomes an actual
customer. The manager of the facility has two types of service con-
figurations available. At the beginning of each period, a decision
must be made on which configuration to use. If she uses her “slow”
configuration at a-cost of $3 and any customers are present duging
the period, one customer will be served and leave the facility with
probability 3. If she uses her “fast” configuration at a cost of $9
and any customers are present during the period, one customer will
be served and leave the facility with probability £ The probability
of more than one customer arriving or more than one customer be-
ing served in a period is zero. A profit of $50 is earned when a
customer js served.

(a) Formulate the problem of choosing the service configuration
period by period as a Markov decision process. Identify the
states and decisions. For each combination of state and deci-
sion, find the expected ner immediate cost (subtracting any
profit from serving a customer) incurred during that period.

(b} Identify all the (stationary deterministic) policies. For each one,
find the transition matrix and write an expression for the {long-
run) expected average net cost per period in terms of the un-
known steady-state probabilities (Ty, T - - ., Thy)-

A (¢} Use your JOR Tirtorial to find these steady-state probabilities

for each policy. Then evaluate the expression obtained in part
(P) to find the optimal policy by exhaustive ennmeration.

19.2-2" A student is concerned about her car and does not like
dents. When she drives to school, she has a choice of parking it on
the street in one space, parking it on the street and taking up two
spaces, or parking in the lot. If she parks on the street in one space,

her car gets dented with probability . If she parks on the street and

takes two spaces, the probability of a dent is 5 and the probability
of a $15 ticket is . Parking in a lot costs $5, but the car will not
get dented. If her car gets dented, she can have it repaired, in which
case it is out of cornmission for 1 day and costs her $50 in fees and
cab fares. She can also drive her car dented, but she feels that the
resulting loss of value and pride is equivalent to a cost of $9 per
school day. She wishes to determine the optimal policy for where
to park and whether to repair the car when dented in order to min-
imize her (long-run) expected average cost per school day.

{(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cy.
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> (b) Identify all the (stationary deterministic} policies. For each one,

find the transition matrix and write an expression for the (long-
run} expected average cost per period in terms of the unknown
steady-state probabilities (mg, 7y, . . ., Tag)
A {) Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
() to find the optimal policy by exhaustive enumeration.

19.2-3. Every Saturday night a man plays poker at his home with

the same group of friends. If he provides refreshments for the group

. (at an expected cost of $14) on any given Saturday night, the group
! will begin the following Saturday night in a good mood with prob-
" ability ;-and in a bad mood with probability §. However, if he fails
i to provide refreshments, the group will begin the following Satur-

day night in a pood mood with probability 1 and in a bad mood
with probability 7, regardless of their mood this Saturday. Further-
more, if the group begins the night in a bad mood and then he fails

. to provide refreshments, the group will gang up on him so that he

incurs expected poker losses of $73. Under other circumstances,
he averages no gain or loss on his poker play. The man wishes to

" find the policy regarding when to provide refreshments that will
minimize his (long-run) expected average cost per week.,

(a) Formulate this problem as a Markov decision process by iden-
tifying the states and decisions and then finding the Cp.

(b) Identify all the (stationary deterministic) policies. For each one,
find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (g, 7, . . ., T

A (¢} Use your IOR Tutorial to find these steady-state probabilities

for each policy. Then evaloate the expression obtained in part
(b} to find the optimal policy by exhaustive enumeration.

19.2-4." When a tennis player serves, he gets two chances to serve
in bounds. If he fails to do so twice, he loses the point. If he at-
tempts to serve an ace, he serves in bounds with probablhty z Ifhe
serves a lob, he serves in bounds with probab1hty 3. If he serves an
ace in bounds, he wins the point with probability 2 With an in-
bounds lob, he wins the point with probability 1. If the cost is +1
for each point lost and —1 for each point won, the problem is to
determine the optimal serving strategy to mimmize the (long-run)
expected average cost per point. (fHint: Let state 0 denote point over,
two serves to go on next point; and let state 1 denote one serve left.)
(a) Formulate this problem as a Markov decision process by iden-
tifying the states and decisions and then finding the Cj.

(b) Identify all the (stationary deterministic) policies. For each one,
find the transition matrix and write an expression for the (long-
run) expected average cost per point in terms of the unknown
steady-state probabilities (mg, 71, . - ., Ta)-

A () Use your {OR Tutorial to find these steady-state probabilities

for each policy. Then evaluate the expression obtained in part
(5) to find the optimal policy by exhaustive enumeration.

19.2-5. Each year Ms. Fontanez has the chance to invest in two
different no-load mutual funds: the Go-Go Fund or the Go-Slow
Mutual Fuand. At the end of each year, Ms. Fontanez liquidates her

holdings, takes her profits, and then reinvests. The yearly profits
of the mutual funds are dependent upon how the market reacts each
year. Recently the market has been oscillating around the 12,000
mark from one year end to the next, according to the probabilities
given in the following transition matrix:

[1,000 12,000 13,000
11,000 0.3 0.5 0.2

12,000 0.1 0.5 04
13,000 0.2 0.4 04

Each year that the market moves up (down) 1,000 points, the Go-Go

Fund has profits (losses) of $20,000, while the Go-Slow Fund has

profits (losses) of $10,000. If the market moves up (down) 2,000

points in a year, the Go-Go Fund has profits (losses) of $50,000, while

the Go-Slow Fund has profits (losses) of only $20,000. If the market
does not change, there is no profit or loss for either fund. Ms. Fontanez
wishes to determine her optimal investment policy in order to mini-
mize her (fong-run) expected average cost (loss minus profit) per year.

(a) Formulate this problem as a Markov decision process by iden-
tifying the states and decisions and then finding the Cy.

(b) Identify all the (stationary deterministic} policies. For each one,
find the transition matrix and write an expression for the (long-
run} expected average cost per pertod in terms of the unknown
steady-state probabilities (mq, 7, . . . . )

A (c) Use your IOR Tutorial to find these steady-state probabilities

for each policy. Then evaluate the expression obtained in part
(b) to find the optimal policy by exhaustive enureration.

19.2-6. Buck and Bili Bogus are twin brothers who work at a gas
station and have a counterfeiting business on the side. Each day a
decision is made as to which brother will go to work at the gas sta-
tion, and then the other will stay home and run the printing press
in the basement. Each day that the machine works properly, it is
estimated that 60 usable $20 bills can be produced. However, the
machine is somewhat unreliable and breaks down frequently. If the
machine is not working at the beginning of the day, Buck can have
it in working order by the beginning of the next day with proba-
bility 0.6. If Bill works on the machine, the probability decreases
to 0.5. If Bill operates the machine when it is working, the prob-
ability is 0.6 that it will still be working at the beginning of the
next day. If Buck operates the machine, it breaks down with prob-
ability G.6. (Assume for simplicity that all breakdowns occur at the
end of the day.) The brothers now wish to determine the optimal
policy for when each should stay home in order to maximize their
(long-run) expected average profit {(amount of usable counterfeit
money produced) per day.

{(a) Formulate this problem as a Markov decision process by iden-
tifying the states and decisions and then finding the Cy.

(b} Identify all the (stationary deterministic) policies. For each one,
find the transition matrix and write an expression for the (long-
run) expected average net profit per period in terms of the un-
known steady-state probabilities (g, 7y, - . . , Tag)-

A () Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
(b} to find the optimal policy by exhaustive enumeration.
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19.3-7. Reconsider Prob, 19.2-7.
{a) Formulate a lincar programming mode] for finding an optima}
policy.
C {b) Use the simplex method to solve this model. Use the re-
sulting optimal solution to identify an optimal policy.

DI 19.4-1. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-1,

DI 19.4-2.° Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-2.

DI 19.4-3. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-3.

DI 19.4-4.° Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-4.

D} 19.4-5. Use the policy improvement algofithm to find an op-
timal policy for Prob. 19.2-5.

DI 19.4-6. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-6.

D 19.4-7. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-7,

Di 19.4-8. Consider the blood-inventory problem presehted in
Prob. 16.5-5. Suppose now that the number of pints of blood de-
livered (on a regular delivery) can be specified at the time of de-
livery {instead of using the old policy of receiving 1 pint at each
delivery). Thus, the number of pints delivered can be 0, 1,2, 0r 3
{more than 3 pints can never be used). The cost of regular deliv-
ery is $50 per pint, while the cost of an emergency delivery is $100
per pint. Starting with the proposed policy given in Prob. 16.5-5,
perform two iterations of the policy improvement algorithim.

1 19.5-1." Joe wants to seli his car. He receives one offer each
month and must decide immediately whiether to accept the oifer.
Once rejected, the offer is lost. The possible offers are $600, $800,
and $1,000, made with probabilities 2, §, and 2, respectively (where
successive offers are independent of each other). There is a main-
tenance cost of $60 per month for the car. Joe is anxious to sell
the car and so has chosen a discount factor of & = 0.95. :

Using the policy improvement algorithm, find a policy that
minimizes the expected total discounted cost. (Hint: There are two
actions: Accept or reject the offer. Let the state for month 7 be the
offer in that month. Also include a state ©, where the process goes
to state o whenever an offer is accepted and it remains there at 2
monthly cost of 0.)

19.5-2." Reconsider Prob. 19.5-1. .
(a) Formulate a linear programming model for finding ari optimal
policy.
C (b} Use the simplex method to solve this model. Use the ¢
sulting optimal solation to identify an optimal policy-

1 19.5-3.° For Prob. 19.5-1, use three iterations of the method of
successive approximations to approximate an optimal policy-
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